Bacteria TMDLs for Occupacia Creek and Farmers Hall Creek
Essex County, Virginia

Submitted by
Virginia Department of Environmental Quality
February, 2007
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>iv</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2. Physical Setting</td>
<td>1</td>
</tr>
<tr>
<td>2.1. Listed Water Bodies</td>
<td>1</td>
</tr>
<tr>
<td>2.2. Watershed</td>
<td>3</td>
</tr>
<tr>
<td>2.2.1. General Description</td>
<td>3</td>
</tr>
<tr>
<td>2.2.2. Geology, Climate, Land Use</td>
<td>5</td>
</tr>
<tr>
<td>3. Description of Water Quality Problem/Impairment</td>
<td>8</td>
</tr>
<tr>
<td>4. Water Quality Standard</td>
<td>11</td>
</tr>
<tr>
<td>4.1. Designated Uses</td>
<td>11</td>
</tr>
<tr>
<td>4.2. Applicable Water Quality Criteria</td>
<td>12</td>
</tr>
<tr>
<td>5. Assessment of Bacteria Sources</td>
<td>13</td>
</tr>
<tr>
<td>5.1. Bacteria Source Tracking (BST)</td>
<td>13</td>
</tr>
<tr>
<td>5.2. Point Sources</td>
<td>15</td>
</tr>
<tr>
<td>5.3. Non-Point Sources</td>
<td>15</td>
</tr>
<tr>
<td>5.3.1. Humans and Pets</td>
<td>16</td>
</tr>
<tr>
<td>5.3.2. Livestock</td>
<td>18</td>
</tr>
<tr>
<td>5.3.3. Wildlife</td>
<td>19</td>
</tr>
<tr>
<td>6. TMDL Development</td>
<td>20</td>
</tr>
<tr>
<td>6.1. Load-Duration Curve</td>
<td>20</td>
</tr>
<tr>
<td>6.1.1. Flow Data</td>
<td>21</td>
</tr>
<tr>
<td>6.1.2. Reference Stream</td>
<td>21</td>
</tr>
<tr>
<td>6.1.3. Flow-Duration Curves</td>
<td>21</td>
</tr>
<tr>
<td>6.1.4. Load-Duration Curve</td>
<td>24</td>
</tr>
<tr>
<td>6.2 TMDL</td>
<td>28</td>
</tr>
<tr>
<td>7. Allocations</td>
<td>31</td>
</tr>
<tr>
<td>7.1. Consideration of Critical Conditions</td>
<td>33</td>
</tr>
<tr>
<td>7.2. Consideration of Seasonal Variations</td>
<td>34</td>
</tr>
<tr>
<td>8.0 TMDL Implementation</td>
<td>34</td>
</tr>
<tr>
<td>8.1 Staged Implementation</td>
<td>34</td>
</tr>
<tr>
<td>8.2. Stage 1 scenarios</td>
<td>35</td>
</tr>
<tr>
<td>8.2.1 Link to Ongoing Restoration Efforts</td>
<td>38</td>
</tr>
<tr>
<td>8.3 Reasonable Assurance for Implementation</td>
<td>38</td>
</tr>
<tr>
<td>8.3.1 Follow-Up Monitoring</td>
<td>38</td>
</tr>
<tr>
<td>8.3.2 Regulatory Framework</td>
<td>38</td>
</tr>
<tr>
<td>8.3.3. Implementation Funding Sources</td>
<td>39</td>
</tr>
<tr>
<td>8.3.4 Addressing Wildlife Contributions</td>
<td>39</td>
</tr>
<tr>
<td>9. Public Participation</td>
<td>40</td>
</tr>
<tr>
<td>10. References</td>
<td>41</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table E1. Average Daily *E. coli* loads and TMDL for Occupacia Creek watershed (cfu/day).vi
Table E2. Average Daily *E. coli* loads and TMDL for Farmers Hall Creek watershed (cfu/day).vi
Table E3. Daily TMDL and required reduction for Occupacia Creek ..vi
Table E4. Daily TMDL and required reduction for Farmers Hall Creek ...vi
Table E5. Phase I Load Allocations (based on a 45% reduction) ..vii
Table 1. Impaired segment descriptions (Occupacia Creek). ...3
Table 2. Climate summary for Warsaw, Virginia (448894). ..6
Table 3. Occupacia watershed land use distribution by major land use category.7
Table 4. Bacteria data collected by DEQ from Occupacia Creek ...9
Table 5. Applicable water quality standards. ..12
Table 6. Occupacia Creek bacteria source tracking results. ...14
Table 7. VPDES, VPA, VAG and VAR point source facilities and loads ..15
Table 8a. Estimated daily fecal coliform production from humans in the Occupacia Creek watershed. ...16
Table 8b. Biosolids applications in the Occupacia Creek watershed 2001 – 2005.17
Table 8c. Estimated fecal coliform production from pets in the Occupacia Creek watershed.18
Table 9. Estimated annual fecal coliform production from livestock in the Occupacia Creek watershed. ..18
Table 10. Estimated fecal coliform production from wildlife in the Occupacia Creek watershed. ...20
Table 11. Average Daily *E. coli* loads and TMDL for Occupacia Creek watershed (cfu/day).31
Table 12. Average Daily *E. coli* loads and TMDL for Farmers Hall Creek watershed (cfu/day).31
Table 13. Daily TMDL and required reduction for Occupacia Creek ..31
Table 14. TMDL and required reduction for Farmers Hall Creek. ..32
Table 15. Daily load distribution, reduction, and allowable load by source for Occupacia Creek33
Table 16. Daily load distribution, reduction, and allowable load by source for Farmers Hall Creek ..33
Table 17. Load Reductions and WQS Violation Rates. ...37
Table 18. Phase I Load Allocations (based on a 45% reduction). ...37

LIST OF FIGURES

Figure 1. Map of the Occupacia Creek study area ..2
Figure 2. Occupacia Creek Watershed ...4
Figure 3. Soil Characteristics of the Occupacia Creek Watershed ..6
Figure 4. Land Use in the Occupacia Creek Watershed ...8
Figure 5. Time series of bacteria concentrations in Occupacia Creek (station 3-OCC010.47)9
Figure 6. Time series of bacteria concentrations in Farmers Hall Creek (station 3-FAR002.88) 10
Figure 7. Monthly distribution of bacteria samples and violations in Occupacia Creek (station 3-OCC010.47). ...10
Figure 8. Monthly distribution of bacteria samples and violations in Farmers Hall Creek (station 3-FAR002.88) ...11
Figure 9. Flow-duration curve for Occupacia Creek at Route 17, near Chance, VA (station 3-OCC010.47) ..22
Figure 10. Flow-duration curve for Farmers Hall Creek at Route 631 (station 3-FAR002.88) 23
Figure 11. Load duration curve and observed data for Occupacia Creek at station 3-OCC010.4 ...24
Figure 12. Load duration curve and observed data for Farmers Hall Creek at station 3-FAR002.88 ...26
Figure 13. Load duration curve with max exceedance curve for Occupacia Creek at station 3-OCC010.47 ...27
Figure 14. Load duration curve with max exceedance curve for Farmers Hall Creek at station 3-FAR002.88 ...28
Figure 15. Load duration curve illustrating the TMDL and estimated average annual *E. coli* load for Occupacia Creek at station 3-OCC010.47 ...29
Figure 16. Load duration curve illustrating the TMDL and estimated average annual *E. coli* load for Farmers Hall Creek at station 3-FAR002.88 ...30
Figure 17. Load duration curve illustrating the TMDL and reduction curves for Occupacia Creek at station 3-OCC010.47 ...36
Figure 18. Load duration curve illustrating the TMDL and reduction curves for Farmers Hall Creek at station 3-FAR002.88 ...37
Executive Summary

This report presents the development of a Bacteria Total Maximum Daily Load (TMDL) for the Occupacia Creek watershed. The Occupacia Creek watershed is located in Essex County in the Rappahannock River Basin (USGS Hydrologic Unit Code 02080104). The waterbody identification code (WBID, Virginia Hydrologic Unit) for Occupacia Creek is VAP-E22R-01, and VAP-E22R-02 for Farmers Halls Creek, both in the Coastal Plain region of Virginia.

The bacteria impairment for Occupacia Creek is 2.76 miles long beginning at Hunters Mill Pond and extending downstream to the upper extent of the tidal limits. The impairment on Farmers Hall Creek is 4.38 miles beginning at the headwaters downstream to its confluence with Occupacia Creek.

The drainage area of the Occupacia Creek watershed is approximately 49.1 square miles. The average annual rainfall as recorded at Warsaw, VA is 43.31 inches. The watershed study area is approximately 31,482.7 acres, which is predominately forested (55.7 percent). Agriculture encompasses 30.9 percent of the watershed, with 18.0 percent cropland and 12.9 pasture/hayland. Residential areas compose approximately 0.90 percent of the land base. The remaining 12.5 percent of the watershed is comprised of wetlands and open water. A map of the distribution of land use in the watershed indicates that the wetlands and forest tend to be located closer to the stream, while the crop and pasture land is farther and upland from the stream.

Occupacia Creek was listed as impaired on Virginia’s 2002 303(d) Report on Impaired Waters (VADEQ 2003) due to violations of the State’s water quality standards for fecal coliform bacteria. Out of 58 bacteria samples collected from April 1995 to June 2006 at station 3-OCC010.47, 8 violated the water quality standard. Farmers Hall Creek was listed as impaired for bacteria on Virginia’s 2004 305(b)/303(d) Water Quality Assessment Integrated Report. Of the 12 bacteria samples collected on Farmers Hall Creek at station 3-FAR002.88 from June 2001 to May 2003, 2 samples violated the water quality standard.

According to Virginia Water Quality Standards (9 VAC 25-260-10A), “all state waters are designated for the following uses: recreational uses (e.g., swimming and boating); the propagation and growth of a balanced indigenous population of aquatic life, including game fish, which might be reasonably expected to inhabit them; wildlife; and the production of edible and marketable natural resources (e.g., fish and shellfish).”

As indicated above, Occupacia Creek and tributaries must support all designated uses and meet all applicable criteria. The Occupacia Creek and Farmers Hall Creek do not currently support primary contact recreation.

The load-duration approach was used to develop the TMDL for the study watershed.

The assessment of bacterial sources involves estimating loads from various sources in the watershed. It was accomplished by determining the relative contribution by these sources using Biological Source Tracking (BST) methodology. A total of 12 ambient water quality samples were collected on a monthly basis from July 2003 through July 2004 for BST analysis. The results indicated that the majority of bacteria are coming from anthropogenic sources. Four categories of sources were considered: human, pet, livestock and wildlife. The analyses determined the relative contribution of all bacteria by these sources. The data indicated that on a weighted average basis, relative contributions of bacteria were 12% human, 51% pet, 30% livestock, and 7% wildlife. Fecal coliform and E. coli bacteria were also enumerated as part of the BST analyses.

The bacteria loads in the study watershed were calculated for point source and non-point sources. There were two facilities that hold General Permits for Stormwater Construction, however construction stormwater permits do not have bacterial permit limits, hence there are no permitted E. coli loads for these facilities. However a one percent wasteload allocation was included for future growth in the
watershed. For non-point sources (human, pets, livestock, and wildlife), total annual fecal productions were calculated separately. Data on population density and waste production by septic systems, pets, livestock and wildlife were collected from various sources, and total fecal productions were calculated with appropriate unit conversions.

The load-duration method essentially uses an entire stream flow record to provide insight into the flow conditions under which exceedances of the water quality standard occur. There was no gaging station in the Occupacia Creek watershed. Therefore, the flow-duration curves were developed using historical flow data collected at the USGS gaging station Piscataway Creek near Tappahannock, VA (#01669000). The load-duration curves for Occupacia Creek and Farmers Hall Creek were then developed by multiplying each flow level along the flow-duration curve by the applicable water quality standard and required unit conversions. Each water quality observation was then assigned to a flow interval by comparing the date of each water quality observation to the flow record of the reference stream. The stream flow from the date of the water quality observation was then used to calculate a stream flow and flow-duration interval for the stream. The load-duration curve produced daily loads. Fecal coliform data was converted to E. coli using a translator equation developed based on the data sets from the DEQ’s statewide monitoring network. The observed loads were plotted on the load-duration curve to determine the number and pattern of exceedances of water quality standards.

In previous TMDLs using this methodology, the curve was transformed from daily loads to annual loads by multiplying each point along the curve by 365. This step was omitted in this TMDL to meet EPA’s new requirement for representing TMDLs as daily loads.

The results indicated that on Occupacia Creek the highest exceedance of the water quality standard occurred twice, at low flows that were exceeded approximately 91% of the time, at 4.24 cfs, and also at 99% of the time, at 0.96 cfs. This represents the flow condition under which the largest bacteria reduction is required in order to meet water quality standards. The translated load at this low flow condition was 2.77×10^{11} cfu/day. Under the instantaneous $E. coli$ standard of 235 cfu/100mL, this load would have to be reduced by 91% to an allowable load of 2.44×10^{10} cfu/day at low flow. The allowable load is simply the $E. coli$ standard multiplied by the applicable flow condition and the proper unit conversions.

For Farmers Hall Creek, the highest bacteria exceedance of water quality standards occurred at 1.21 cfs, a 74% flow interval. The translated load at low flow was 4.47×10^{10} cfu/day. To be under the instantaneous $E. coli$ standard of 235 cfu/100 mL, this load would have to be reduced by 84% to an allowable daily load of 6.98×10^9 cfu/day at low flow.

For Occupacia Creek the one percent flow duration daily $E. coli$ load is 7.10×10^{12} cfu/day, and the daily TMDL load under one percent flow duration is 6.27×10^{11} cfu/day. For Farmers Hall Creek the one percent flow duration daily $E. coli$ load is 4.73×10^{11} cfu/day, and the daily TMDL load under one percent flow duration is 7.58×10^{10} cfu/day. These values are used to calculate required reductions. Although there are no point sources with bacterial permit limits in either watershed, it is reasonable to assume future growth will occur. For this reason, a wasteload allocation (WLA) is set for one (1) percent of the total load allocation. This totals 6.27×10^9 cfu/day and 7.58×10^9 cfu/day for Occupacia Creek and Farmers Hall Creek, respectively. The remaining load allocations (LA) address allowable non-point source bacterial contributions.

The TMDL, WLA and LA are presented as daily loads in Table E1 for Occupacia Creek and Table E2 for Farmers Hall Creek.

Tables E3 and E4 show the required LA reductions for Occupacia and Farmers Hall Creeks. The full calculations are presented in Appendix C.
Table E1. Average Daily *E. coli* loads and TMDL for Occupacia Creek watershed (cfu/day).

<table>
<thead>
<tr>
<th>WLA</th>
<th>LA</th>
<th>MOS</th>
<th>TMDL</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.27 x 10^9</td>
<td>6.21 x 10^11</td>
<td>(implicit)</td>
<td>6.27 x 10^11</td>
</tr>
</tbody>
</table>

1 – The TMDL is presented for the 99th percentile daily flow condition at the numeric water quality criterion of 235 cfu/100ml. The TMDL is variable along the TMDL curve depending on flow conditions. The numeric water quality criterion will be used to assess progress toward TMDL goals.

2 – The WLA reflects an allocation for potential future permits issued for bacteria control. Any issued permit will include bacteria effluent limits in accordance with applicable permit guidance and will ensure that the discharge meets the applicable numeric water quality criteria for bacteria at the end-of-pipe.

Table E2. Average Daily *E. coli* loads and TMDL for Farmers Hall Creek watershed (cfu/day).

<table>
<thead>
<tr>
<th>WLA</th>
<th>LA</th>
<th>MOS</th>
<th>TMDL</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.58 x 10^8</td>
<td>7.50 x 10^10</td>
<td>(implicit)</td>
<td>7.58 x 10^10</td>
</tr>
</tbody>
</table>

1 – The TMDL is presented for the 99th percentile daily flow condition at the numeric water quality criterion of 235 cfu/100ml. The TMDL is variable along the TMDL curve depending on flow conditions. The numeric water quality criterion will be used to assess progress toward TMDL goals.

2 – The WLA reflects an allocation for potential future permits issued for bacteria control. Any issued permit will include bacteria effluent limits in accordance with applicable permit guidance and will ensure that the discharge meets the applicable numeric water quality criteria for bacteria at the end-of-pipe.

Table E3. Daily TMDL and required reduction for Occupacia Creek.

<table>
<thead>
<tr>
<th>Allowable Loads (cfu/day)</th>
<th>Daily EC Load (cfu/day)</th>
<th>Required Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMDL (daily)</td>
<td>6.27 x 10^11</td>
<td></td>
</tr>
<tr>
<td>Wasteload Allocation (WLA)</td>
<td>6.27 x 10^9</td>
<td></td>
</tr>
<tr>
<td>MOS</td>
<td>(implicit)</td>
<td></td>
</tr>
<tr>
<td>Load Allocation (LA)</td>
<td>6.21 x 10^11</td>
<td>7.10 x 10^12</td>
</tr>
</tbody>
</table>

1 – The TMDL is presented for the 99th percentile daily flow condition at the numeric water quality criterion of 235 cfu/100ml. The TMDL is variable along the TMDL curve depending on flow conditions. The numeric water quality criterion will be used to assess progress toward TMDL goals.

2 – The WLA reflects an allocation for potential future permits issued for bacteria control. Any issued permit will include bacteria effluent limits in accordance with applicable permit guidance and will ensure that the discharge meets the applicable numeric water quality criteria for bacteria at the end-of-pipe.

Table E4. Daily TMDL and required reduction for Farmers Hall Creek.

<table>
<thead>
<tr>
<th>Allowable Loads (cfu/day)</th>
<th>Daily EC Load (cfu/day)</th>
<th>Required Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMDL (daily)</td>
<td>7.58 x 10^10</td>
<td></td>
</tr>
<tr>
<td>Wasteload Allocation (WLA)</td>
<td>7.58 x 10^8</td>
<td></td>
</tr>
<tr>
<td>MOS</td>
<td>(implicit)</td>
<td></td>
</tr>
<tr>
<td>Load Allocation (LA)</td>
<td>7.50 x 10^10</td>
<td>4.73 x 10^11</td>
</tr>
</tbody>
</table>

1 – The TMDL is presented for the 99th percentile daily flow condition at the numeric water quality criterion of 235 cfu/100ml. The TMDL is variable along the TMDL curve depending on flow conditions. The numeric water quality criterion will be used to assess progress toward TMDL goals.

2 – The WLA reflects an allocation for potential future permits issued for bacteria control. Any issued permit will include bacteria effluent limits in accordance with applicable permit guidance and will ensure that the discharge meets the applicable numeric water quality criteria for bacteria at the end-of-pipe.
The required reduction of 91% for Occupacia Creek, and 84% for Farmers Hall Creek are to be applied to each of the four non-point bacterial source groups identified in the BST analysis.

The Occupacia Creek watershed TMDL development presented in this report is the first step toward the attainment of water quality standards. The second step is to develop a TMDL implementation plan, and the final step is the field implementation of the TMDL to attain water quality standards.

The Commonwealth intends for this TMDL to be implemented through a process of phased implementation of best management practices (BMPs). The development of the Occupacia Creek TMDL requires a 91% reduction in non-point source loading for the Occupacia Creek watershed in order to attain a 0% violation of water quality standards. In order to evaluate interim reduction goals for a phased implementation plan, several reduction levels (85%, 70%, and 45%) and their associated violation rates were assessed. Reduction curves similar to the maximum exceedance/reduction curve were plotted and are presented in this report.

Based on the reduction analysis presented above and a goal of 10% or fewer violations of the water quality standard, a suitable Phase I reduction level for Occupacia and Farmers Hall Creeks would be 45%. Table E5 presents the Phase I load allocations for Occupacia Creek based on a 45% reduction of in-stream loads.

Table E5. Phase I Load Allocations (based on a 45% reduction).

<table>
<thead>
<tr>
<th></th>
<th>Total (cfu/day)</th>
<th>Human @ 12% (cfu/day)</th>
<th>Pet @ 51% (cfu/day)</th>
<th>Livestock @ 30% (cfu/day)</th>
<th>Wildlife @ 7% (cfu/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily Load</td>
<td>7.10 x 10^{12}</td>
<td>8.52 x 10^{11}</td>
<td>3.62 x 10^{12}</td>
<td>2.13 x 10^{12}</td>
<td>4.97 x 10^{11}</td>
</tr>
<tr>
<td>Reduction</td>
<td>45.0%</td>
<td>99%</td>
<td>41%</td>
<td>41%</td>
<td>0%</td>
</tr>
<tr>
<td>Target Daily</td>
<td>3.90 x 10^{12}</td>
<td>8.52 x 10^9</td>
<td>2.14 x 10^{12}</td>
<td>1.25 x 10^{12}</td>
<td>4.97 x 10^{11}</td>
</tr>
</tbody>
</table>

At the 45 percent daily load reduction level, which results in a 10.3% violation rate, the total allowable daily load is greater than the wildlife load. A 98% to 99% (from Table 15) reduction in human, pet and livestock E. coli loads may not be needed to return E. coli loads and percent violations less than 10 percent above the water quality standard. The use of staged implementation may show that the TMDL reduction may be reached without implementation of all available BMPs.

During the first implementation phase, all controllable anthropogenic sources will be reduced to the maximum extent practicable using a staged approach. Following completion of the first phase, VADEQ would perform follow-up monitoring to re-assess water quality in the stream to determine if the water quality standard has been attained. If water quality standards are not being met, a Use Attainability Analysis (UAA) may be initiated to reflect the presence of naturally high bacteria levels due to uncontrollable sources (wildlife).

In order to provide some insight into the nature of the Occupacia Creek water quality violations and to better target possible BMPs, the correlation between violations, stream flow change, and local precipitation was examined. Results indicate that approximately 62% of the violations occurred during times of precipitation and increasing stream flow or just after a precipitation event with stable or decreasing stream flow. This suggests that those violations could be related to runoff events.

BMPs effective in correcting dry weather/low-flow violations of the bacteria water quality standard typically include: streamside fencing for cattle exclusion, straight pipe replacement, and septic system repair. Among some of the BMPs effective in reducing bacteria runoff from precipitation events include: riparian buffers zone, retention ponds/basins, range and pasture management, and animal waste management.
Detailed lists of BMPs and their relative effectiveness will be presented in the eventual TMDL implementation plan for the Occupacia Creek watershed.

The development of the Occupacia Creek TMDLs was not possible without public participation. A public meeting was held at the Essex County Public Library in Tappahannock, VA at 7 pm on August 16, 2006 to discuss the process for TMDL development and the source assessment input, which 6 persons attended. A Technical Advisory Committee meeting was held at the Essex County Public Library at 2 pm on November 15, 2006, which 5 persons attended. A final public meeting was held at the Essex County Public Library at 7 pm on November 30, 2006 to discuss the TMDL results and the draft report, including load allocations, which 5 persons attended. Copies of presentation materials were made available for public distribution. The public and TAC meetings were public noticed in the Virginia Register. 30 day-public comment periods were held after each public and TAC meeting in which no comments were received.
1. Introduction

Section 303(d) of the Clean Water Act and US Environmental Protection Agency's (EPA's) Water Quality Planning and Management Regulations (40 CFR Part 130) require states to develop Total Maximum Daily Loads (TMDLs) for waterbodies which are exceeding water quality standards. TMDLs represent the total pollutant loading that a waterbody can receive without violating water quality standards. The TMDL process establishes the allowable loadings of pollutants for a waterbody based on the relationship between pollution sources and in-stream water quality conditions. By following the TMDL process, states can establish water quality based controls to reduce pollution from both point and non-point sources to restore and maintain the quality of their water resources (EPA, 1991).

The Commonwealth of Virginia's (Virginia's) 1997 Water Quality Monitoring, Information, and Restoration Act (WQMIRA) codifies the requirement for the development of TMDLs for impaired waters. Specifically section § 62.1-44.19:7 C states:

"The plan required by subsection A shall, upon identification by the Board of impaired waters, establish a priority ranking for such waters, taking into account the severity of the pollution and the uses to be made of such waters. The Board shall develop and implement pursuant to a schedule total maximum daily loads of pollutants that may enter the water for each impaired water body as required by the Clean Water Act."

The EPA specifies that in order for a TMDL to be considered complete and approvable, it must include the following eight elements:

1. It must be designed to meet applicable water quality standards,
2. It must include a total allowable load as well as individual waste load allocations and load allocations,
3. It must consider the impacts of background pollution,
4. It must consider critical environmental conditions or those conditions (stream flow, precipitation, temperature, etc.) which together can contribute to a worst-case exceedance of the water quality standard,
5. It must consider seasonal variations which together with the environmental variations can lead to a worst-case exceedance,
6. It must include an implicit or explicit margin of safety to account for uncertainties inherent in the TMDL development process,
7. It must allow adequate opportunity for public participation in the TMDL development process,
8. It must provide reasonable assurance that the TMDL can be met.

The following document details the development of a bacteria TMDL for Occupacia Creek which was listed as impaired on Virginia's 2002 305(b) Water Quality Assessment Report. Farmers Hall Creek, located within the Occupacia Creek watershed, was also listed for fecal coliform impairments in the 2004 305(b)/303(d) Water Quality Assessment Integrated Report. This report evaluates the bacteria impairment by using the Load Duration Approach (LDA) for the TMDL development study in the Occupacia Creek watershed.

A glossary of terms used throughout this report is presented as Appendix A.

2. Physical Setting

2.1. Listed Water Bodies

Occupacia Creek (Figure 1) is located in Essex County in the Rappahannock River Basin (USGS Hydrologic Unit Code 02080104). The waterbody identification code (WBID, Virginia Hydrologic Unit) for Occupacia Creek is VAP-E22R-01. There are 71.3 total stream miles and 0.89 total estuarine square miles in the Occupacia watershed (National Hydrography Dataset (NHD). Approximately 2.76 miles of
Occupacia Creek were listed as impaired due to violations of Virginia’s water quality standards for fecal coliform bacteria and pH, and 4.38 miles of Farmers Hall Creek were listed as impaired for fecal coliform bacteria. The pH impairment was addressed in a separate document.

Figure 1. Map of the Occupacia Creek study area.

The Occupacia Creek impairment begins at Hunters Millpond and continues downstream to the upper tidal limits. The bacteria impairment in Farmers Hall Creek begins in the headwaters and continues downstream to its confluence with the tidal portion of Occupacia Creek (Table 1).
Table 1. Impaired segment descriptions (Occupacia Creek).

<table>
<thead>
<tr>
<th>Segment</th>
<th>Impairment (source of impairment)</th>
<th>Upstream Limit Description</th>
<th>Downstream Limit Description</th>
<th>Miles Affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupacia Creek (VAP-E22R-01)</td>
<td>Fecal Coliform: (unknown)</td>
<td>Hunters Millpond Dam</td>
<td>Confluence with upper Tidal Limit</td>
<td>2.76</td>
</tr>
<tr>
<td>Farmers Hall Creek</td>
<td>Fecal coliform (unknown)</td>
<td>Headwaters</td>
<td>Confluence with Occupacia Creek</td>
<td>4.38</td>
</tr>
</tbody>
</table>

2.2. Watershed

2.2.1. General Description

Occupacia Creek, located within Essex County, Virginia, is a minor tributary to the Rappahannock River (Figure 2). It is approximately 19 miles long and flows east from its headwaters near Jacks Fork, VA, to its confluence with the Rappahannock River. The watershed has an area of approximately 49.1 square miles. Essex County has a combined land and water area of 285.9 square miles (http://www.city-data.com/county/Essex_County-VA.html). Farmers Hall Creek enters the tidal portion of Occupacia Creek approximately 1.85 miles upstream of its confluence with the Rappahannock River. There is no continuous flow gaging station on Occupacia Creek, however there is a gage on Piscataway Creek near Tappahannock, VA, 01669000, located ten miles south of Occupacia Creek, with a drainage area of 28.0 mi².
Figure 2. Occupacia Creek Watershed.
2.2.2. Geology, Climate, Land Use

Geology and Soils

Occupacia Creek is in the Atlantic Coastal Plain physiographic region. The Atlantic Coastal Plain is the easternmost of Virginia’s physiographic provinces. The Atlantic Coastal Plain extends from New Jersey to Florida, and includes all of Virginia east of the Fall Line. The Fall Line is the easternmost extent of rocky river rapids, the point at which east-flowing rivers cross from the hard, igneous and metamorphic rocks of the Piedmont to the relatively soft, unconsolidated strata of the Coastal Plain. The Coastal Plain is underlain by layers of Cretaceous and younger clay, sand, and gravel that dip gently eastward. These layers were deposited by rivers carrying sediment from the eroding Appalachian Mountains to the west. As the sea level rose and fell, fossiliferous marine deposits were interlayered with fluvial, estuarine, and beach strata. The youngest deposits of the Coastal Plain are sand, silt and mud presently being deposited in our bays and along our beaches (http://www.geology.state.va.us/DOCS/Geol/coast.html).

Soils for the Occupacia Creek watershed were documented utilizing the VA State Soil Geographic Database (STATSGO). Two general soil types were identified using in this database. Descriptions of these soil series were derived from queries to the USDA Natural Resources Conservation Service (NRCS) Official Soil Series Description web site (http://ortho.ftw.nrcs.usda.gov/cgi-bin/osd/osdname.cgi). Figure 3 shows the location of these general soil types in the watershed.

Soils of the Emporia-Johnston-Kenansville-Remlik-Rumford-Slagle-Suffolk-Tomotley (VA027) series are very deep to deep, and vary between well drained to poorly drained with moderately slow or slow permeability. They formed in moderately fine-textured stratified fluvial and marine sediments on the upper Coastal Plain and stream terraces.

Soils of the Tetotum-Nansemond-State-Emporia-Dragston-Nimmo-Bladen Series (VA036) are very deep and range from well drained to poorly drained. Permeability ranges from moderately rapid and/or rapid to moderately slow or slow. This soil series was formed in sandy or loamy fluvial and marine sediments on Coastal Plain uplands and stream terraces.

Soils of the Pamunkey-Nansemond-Bibb-Kinston-Nawney-Bohicket Series (VA038) are very deep, poorly to well drained soils, and range from well to moderately well to slow permeability. These soils are located on low stream or marine terraces and in the flood plains in the Piedmont and the Coastal Plain Physiograph Provinces. These soil series are formed in fine to coarse loamy marine and fluvial sediments and sandy alluvium.
Figure 3. Soil Characteristics of the Occupacia Creek Watershed.

Climate

The climate summary for Occupacia Creek comes from a weather station located in Warsaw, VA, with a period of record from 1/1/1951 to 12/31/2005. The average annual maximum and minimum temperature (°F) at the weather station is 68.7 and 47.0 and the annual rainfall (inches) is 43.31 (Table 2). (Southeast Regional Climate Center, http://www.sercc.com/climateinfo/historical/historical_va.html).

Table 2. Climate summary for Warsaw, Virginia (448894).

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Max. Temp.</td>
<td>46.4</td>
<td>50.0</td>
<td>58.4</td>
<td>69.5</td>
<td>77.5</td>
<td>85.1</td>
<td>88.8</td>
<td>87.1</td>
<td>81.2</td>
<td>70.6</td>
<td>60.5</td>
<td>49.8</td>
<td>68.7</td>
</tr>
<tr>
<td>(F)</td>
<td></td>
</tr>
<tr>
<td>Average Min. Temp.</td>
<td>27.4</td>
<td>29.5</td>
<td>36.0</td>
<td>44.9</td>
<td>54.1</td>
<td>62.5</td>
<td>67.1</td>
<td>65.6</td>
<td>58.8</td>
<td>47.5</td>
<td>39.1</td>
<td>30.9</td>
<td>47.0</td>
</tr>
<tr>
<td>(F)</td>
<td></td>
</tr>
<tr>
<td>Average Total Prec.</td>
<td>3.14</td>
<td>2.78</td>
<td>3.81</td>
<td>3.01</td>
<td>4.13</td>
<td>3.56</td>
<td>4.61</td>
<td>4.50</td>
<td>4.10</td>
<td>3.36</td>
<td>3.19</td>
<td>3.11</td>
<td>43.31</td>
</tr>
<tr>
<td>(in.)</td>
<td></td>
</tr>
</tbody>
</table>
Land Use

Occupacia Creek and its tributaries are approximately 19 miles long and flow east from its headwaters near Jacks Fork, VA, to its confluence with the Rappahannock River. The watershed is approximately 31,482.6 acres in size and is predominately forested (55.7 percent). Agriculture encompasses 30.9 percent of the watershed, with 18.0 percent cropland and 12.9 pasture/hayland. Residential and high use industrial areas compose approximately 0.9 percent of the land base. The remaining 12.5 percent of the watershed is comprised of 2.4 percent of transitional areas and grasses, and 8.0 percent wetlands and 2.0 percent open water. Land use is described in Table 3.

A map of the distribution of land use in the watershed (Figure 4) shows that agriculture and forest land cover the majority of the watershed with the small portion of urban land present along Rt. 17.

Land use characterization was based on National Land Cover Data (NLCD), developed cooperatively by the U.S. Environmental Protection Agency and the U.S. Geological Survey. NLCD data is derived from satellite and aerial images circa 1992. For more information of this data source, please visit http://www.epa.gov/mrlc/nlcd.html.

<table>
<thead>
<tr>
<th>Land Use Name and Code</th>
<th>Area (acres)</th>
<th>Area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Water</td>
<td>634.3</td>
<td>2.01</td>
</tr>
<tr>
<td>Low Intensity Residential</td>
<td>187.9</td>
<td>0.60</td>
</tr>
<tr>
<td>High Intensity Residential</td>
<td>0.0</td>
<td>0.00</td>
</tr>
<tr>
<td>High Intensity Commercial/Industrial/Transportation</td>
<td>94.5</td>
<td>0.30</td>
</tr>
<tr>
<td>Bare Rock/Sand/Clay</td>
<td>0.4</td>
<td>0.00</td>
</tr>
<tr>
<td>Quarries/Strip Mines/Gravel Pits</td>
<td>0.0</td>
<td>0.00</td>
</tr>
<tr>
<td>Transitional</td>
<td>772.2</td>
<td>2.45</td>
</tr>
<tr>
<td>Deciduous Forest</td>
<td>10259.1</td>
<td>32.59</td>
</tr>
<tr>
<td>Evergreen Forest</td>
<td>1511.6</td>
<td>4.80</td>
</tr>
<tr>
<td>Mixed Forest</td>
<td>5773.1</td>
<td>18.34</td>
</tr>
<tr>
<td>Pasture/Hay</td>
<td>4067.4</td>
<td>12.92</td>
</tr>
<tr>
<td>Row Crops</td>
<td>5658.4</td>
<td>17.97</td>
</tr>
<tr>
<td>Other Grasses (Urban/recreational; e.g. parks)</td>
<td>0.0</td>
<td>0.00</td>
</tr>
<tr>
<td>Woody Wetlands</td>
<td>1526.1</td>
<td>4.85</td>
</tr>
<tr>
<td>Emergent Herbaceous Wetlands</td>
<td>997.7</td>
<td>3.17</td>
</tr>
<tr>
<td>Total:</td>
<td>31482.7</td>
<td>100.00</td>
</tr>
</tbody>
</table>

1 NLCD, 1992.
3. Description of Water Quality Problem/Impairment

Occupacia Creek and its tributaries were listed as impaired on Virginia’s 2002 303(d) Report on Impaired Waters (VADEQ 2003) due to violations of the State’s water quality standards for pH and fecal coliform bacteria. In the 2004 Virginia’s 305(b)/303(d) Water Quality Assessment Integrated Report, Farmers Hall Creek was also listed as impaired due to violations of the State’s water quality standard for fecal coliform. This report evaluates the bacteria impairments by using the Load Duration Approach (LDA) for the TMDL development study in the Occupacia Creek watershed.

Of 58 bacteria samples collected at station 3-OGC010.47 from April 1995 to June 2006, 8 violated the water quality standards (Table 4). For Farmers Hall Creek, of the 12 samples that were collected from June 2001 to May 2003 at station 3-FAR002.88, there were 2 exceedances. In 2003, sample collections also included bacteria monitoring of E. coli. The bacteria analyses for this study include both fecal coliform and E. coli.
Table 4. Bacteria data collected by DEQ from Occupacia Creek.

<table>
<thead>
<tr>
<th>Station</th>
<th>Date of First Sample</th>
<th>Date of Last Sample</th>
<th>Number of Samples</th>
<th>Number of Exceedances*</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-FAR002.88</td>
<td>6/6/2001</td>
<td>5/22/2003</td>
<td>12</td>
<td>2</td>
</tr>
</tbody>
</table>

*Exceedances of the then applicable instantaneous water quality standard of 1,000 cfu/100 ml until December 2002, and the 235 E. coli cfu/100 ml after January 2003.

A time series graph of all data collected at station 3-OCC010.47 shows the bacteria concentrations ranging from 10 to 10,000 cfu/100 ml (Figure 5). The horizontal line at the 1000 cfu/100 ml fecal coliform instantaneous water quality standard and 235 cfu/100ml E. coli water quality standard represents the then-applicable instantaneous fecal coliform water quality standards. The data points above the 1000 cfu/100 ml fecal coliform instantaneous water quality standard and the 235 cfu/100 ml E. coli water quality standard lines represent violations of the applicable water quality standard. The time series graph for the fecal coliform bacteria concentrations at station 3-FAR002.88 on Farmers Hall Creek is presented in Figure 6. The lowered standard line in Figure 8 represents the interim fecal coliform water quality standard of 400 cfu/100 ml in effect in 2003 in the absence of E. coli sample results.

Figure 5. Time series of bacteria concentrations in Occupacia Creek (station 3-OCC010.47).
Figure 6. Time series of bacteria concentrations in Farmers Hall Creek (station 3-FAR002.88).

Figure 7 and 8 present the number of bacteria samples and exceedances that were recorded for each month for Occupacia Creek and Farmers Hall Creek, respectively, (where the instantaneous water quality standard = 1000 fecal coliform cfu/100mL until Dec. 2002, or 235 E. coli cfu/100mL after Jan 2003).

Figure 7. Monthly distribution of bacteria samples and violations in Occupacia Creek (station 3-OCC010.47).
Figure 8. Monthly distribution of bacteria samples and violations in Farmers Hall Creek (station 3-FAR002.88).

4. Water Quality Standard

According to Virginia Water Quality Standards (9 VAC 25-260-5), the term “water quality standards means provisions of state or federal law which consist of a designated use or uses for the waters of the Commonwealth and water quality criteria for such waters based upon such uses. Water quality standards are to protect the public health or welfare, enhance the quality of water and serve the purposes of the State Water Control Law (§62.1-44.2 et seq. of the Code of Virginia) and the federal Clean Water Act (33 USC §1251 et seq.).”

As stated above, Virginia water quality standards consist of a designated use or uses and a water quality criteria. These two parts of the applicable water quality standard are presented in the sections that follow.

4.1. Designated Uses

According to Virginia Water Quality Standards (9 VAC 25-260-10A), “all state waters are designated for the following uses: recreational uses (e.g., swimming and boating); the propagation and growth of a balanced indigenous population of aquatic life, including game fish, which might be reasonably expected to inhabit them; wildlife; and the production of edible and marketable natural resources (e.g., fish and shellfish).”

As stated above, Occupacia Creek must support all designated uses and meet all applicable criteria.
4.2. Applicable Water Quality Criteria

The applicable water quality criteria for bacteria in the Occupacia Creek watershed has changed since the initial listing on the 303(d) report. Following EPA recommendations, the Virginia Department of Environmental Quality (DEQ) proposed more stringent fecal coliform bacteria standards as well as new standards for Escherichia coli (E. coli) bacteria (Table 5). These new standards were adopted by the State Water Control Board in May 2002, public noticed in June 2002, approved by the USEPA in November 2002, and were effective January 15, 2003.

The EPA recommendation that states adopt E. coli and enterococci (saltwater) standards stems from a stronger correlation between the concentration of E. coli and enterococci organisms and the incidence of gastrointestinal illness. E. coli and enterococci are both bacteriological organisms that can be found in the intestinal tract of warm-blooded animals. E. coli is a subset of fecal coliform group; thus a waterbody listed as impaired for fecal coliform is considered to be listed for E. coli as well.

Although Occupacia Creek was listed as impaired due to a violation of the previous fecal coliform standard, the TMDL must be developed to meet the new E. coli bacteria standard. The interim fecal coliform bacteria standard presented below will not apply to this TMDL since 12 E. coli bacteria samples were collected as part of the bacteria source tracking study of the source assessment.

New Bacteria Standards

For a non-shellfish supporting water body to be in compliance with Virginia bacteria standards for primary contact recreational use, the DEQ specifies the following criteria (9 VAC 25-260-170):

1. Fecal coliform bacteria shall not exceed a geometric mean of 200 fecal coliform bacteria per 100 ml of water for two or more samples over a calendar month nor shall more than 10% of the total samples taken during any calendar month exceed 400 fecal coliform bacteria per 100 ml of water. This criterion shall not apply for a sampling station after the bacterial indicators described in subdivision 2 of this subsection have a minimum of 12 data points or after June 30, 2008, whichever comes first.

2. E. coli and enterococci bacteria per 100 ml of water shall not exceed the following:

Table 5. Applicable water quality standards

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Geometric Mean(^1) (cfu/100 ml)</th>
<th>Single Sample (cfu/100 ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli (fresh water)</td>
<td>126</td>
<td>235</td>
</tr>
<tr>
<td>Enterococci (saltwater & Transition Zone 3)</td>
<td>35</td>
<td>104</td>
</tr>
</tbody>
</table>

\(^1\) for two or more samples taken during a calendar month.

If the waterbody exceeds the criterion as listed above in more than 10.5 percent of samples, the waterbody is classified as impaired and a TMDL must be developed and implemented to bring the waterbody into compliance with the water quality criterion. Based on the sampling frequency, only one criterion is applied to a particular datum or data set (9 VAC 25-260-170). If the sampling frequency is one sample or less per calendar month, the instantaneous criterion is applied; for a higher sampling frequency, the geometric mean criterion is applied.

For Occupacia Creek, the TMDL is required to meet the instantaneous criterion since the load-duration approach used to develop the TMDL for Occupacia Creek yields the maximum allowable bacteria concentration under any given flow condition. Unlike a continuous time series simulation, the flow duration approach does not yield daily bacteria concentrations which are needed to apply the 30-day geometric
mean standard. Such an approach ensures that TMDLs, when implemented, do not result in violations under a wide variety of scenarios that affect bacteria loading.

5. Assessment of Bacteria Sources

The assessment of bacteria sources in traditional bacteria TMDL studies involves estimating loads from sources in the watershed and developing a computer model to establish the links between estimated loads and actual in-stream bacteria concentrations.

In a load-duration bacteria TMDL, source assessment is accomplished by determining the relative contribution by source of the fecal bacteria contained in a sample of stream water. This method of source identification is achieved through microbial source tracking (MST). MST methods that specifically use bacteria as the target organism are referred to collectively as bacteria source tracking (BST) methods. MST has been applied to study microbial ecology of environmental systems for years and are now being applied to help improve water quality by identifying problem sources and determining the effect of implemented remedial solutions. Management and remediation of water pollution would be more cost effective if the correct sources could be identified (Simpson, 2002).

To support BST analyses in load-duration TMDLs, bacteria loading in a watershed is also estimated. These load estimates are broken into point and non-point sources. It is important to note that the non-point source load estimates represent loading to the surface of the watershed; they are not estimates of in-stream loads.

The following sections present BST analysis and point- and non-point source load estimates.

5.1. Bacteria Source Tracking (BST)

Background

MST methods can be divided into three categories: molecular (genotype), biochemical (phenotype), and chemical. Molecular methods may offer the most precise identification of specific types of sources but are limited by high per-isolate costs and detailed and time-consuming procedures. They are not yet suitable for assaying large numbers of samples in a reasonable time frame. Biochemical methods (BST) may or may not be as precise, but are more simple, quicker, less costly, and allow large numbers of samples to be assayed in a short period of time (Hagedorn, 2002).

Several biochemical BST methods are in various stages of development. Among these are Antibiotic Resistance Analysis (ARA), F-Specific (F+ or FRNA) Coliphage, Sterols or Fatty Acid Analysis, Nutritional Patterns, and Fecal Bacteria Ratios. Of these, ARA has been chosen as the BST method for this TMDL report.

The ARA method uses fecal streptococcus (including the enterococci) and/or \textit{E. coli} and patterns of antibiotic resistance for separation of sources. The premise is that human fecal bacteria will have the greatest resistance to antibiotics and that domestic and wildlife animal fecal bacteria will have significantly less resistance (but still different) to the battery of antibiotics and concentrations used. Most investigators are testing each isolate on 30 to 70+ antibiotic concentrations (Hagedorn, 2002). A more detailed description of the ARA method used by MapTech, Inc. in support of this TMDL is presented in Appendix B.
BST Sampling and Results

A total of 12 ambient water quality samples were collected by DEQ staff and submitted to MapTech, Inc. (MapTech) for BST analysis. The BST analyses performed by MapTech determined the relative contribution of overall bacteria by human, canine, livestock, and wildlife sources. Fecal and E.coli bacteria were also enumerated as part of the analyses performed by MapTech. The annual BST percentages for wildlife, human, livestock and pet were weighted by the number of isolates, E. coli concentration, and flow. Results of the Occupacia Creek BST sampling program are presented in Table 6.

Table 6. Occupacia Creek bacteria source tracking results.

<table>
<thead>
<tr>
<th>Station ID</th>
<th>Sample Date</th>
<th># Isolates</th>
<th>E. Coli, cfu/100 ml</th>
<th>% Wildlife</th>
<th>% Human</th>
<th>% Livestock</th>
<th>% Pet</th>
<th>Flow, cfs</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-OCC010.47</td>
<td>7/28/03</td>
<td>24</td>
<td>120</td>
<td>17%</td>
<td>8%</td>
<td>42%</td>
<td>33%</td>
<td>24</td>
</tr>
<tr>
<td>3-OCC010.47</td>
<td>8/20/03</td>
<td>24</td>
<td>64</td>
<td>29%</td>
<td>0%</td>
<td>71%</td>
<td>0%</td>
<td>27</td>
</tr>
<tr>
<td>3-OCC010.47</td>
<td>9/17/03</td>
<td>24</td>
<td>320</td>
<td>0%</td>
<td>0%</td>
<td>79%</td>
<td>21%</td>
<td>34</td>
</tr>
<tr>
<td>3-OCC010.47</td>
<td>10/14/03</td>
<td>15</td>
<td>150</td>
<td>20%</td>
<td>0%</td>
<td>0%</td>
<td>80%</td>
<td>33</td>
</tr>
<tr>
<td>3-OCC010.47</td>
<td>11/19/03</td>
<td>24</td>
<td>52</td>
<td>17%</td>
<td>8%</td>
<td>4%</td>
<td>71%</td>
<td>33</td>
</tr>
<tr>
<td>3-OCC010.47</td>
<td>12/10/03</td>
<td>16</td>
<td>26</td>
<td>94%</td>
<td>0%</td>
<td>6%</td>
<td>0%</td>
<td>30</td>
</tr>
<tr>
<td>3-OCC010.47</td>
<td>1/12/04</td>
<td>6</td>
<td>10</td>
<td>33%</td>
<td>67%</td>
<td>0%</td>
<td>0%</td>
<td>27</td>
</tr>
<tr>
<td>3-OCC010.47</td>
<td>2/18/04</td>
<td>2</td>
<td>4</td>
<td>50%</td>
<td>0%</td>
<td>0%</td>
<td>50%</td>
<td>38</td>
</tr>
<tr>
<td>3-OCC010.47</td>
<td>4/14/04</td>
<td>14</td>
<td>140</td>
<td>0%</td>
<td>0%</td>
<td>29%</td>
<td>71%</td>
<td>73</td>
</tr>
<tr>
<td>3-OCC010.47</td>
<td>5/24/04</td>
<td>24</td>
<td>410</td>
<td>4%</td>
<td>50%</td>
<td>0%</td>
<td>46%</td>
<td>22</td>
</tr>
<tr>
<td>3-OCC010.47</td>
<td>6/8/04</td>
<td>21</td>
<td>70</td>
<td>10%</td>
<td>0%</td>
<td>0%</td>
<td>90%</td>
<td>15</td>
</tr>
<tr>
<td>3-OCC010.47</td>
<td>7/21/04</td>
<td>24</td>
<td>320</td>
<td>4%</td>
<td>8%</td>
<td>8%</td>
<td>8%</td>
<td>80%</td>
</tr>
</tbody>
</table>

Weighted Percentage Calculations:
Isolates X Concentration X Flow X Percentage

Annual Weighted Averages:
Sum by Category and Divide by Total

<table>
<thead>
<tr>
<th>Sample Date</th>
<th>Wildlife</th>
<th>Human</th>
<th>Livestock</th>
<th>Pet</th>
<th>Wildlife</th>
<th>Human</th>
<th>Livestock</th>
<th>Pet</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/28/03</td>
<td>11659.21</td>
<td>5486.686</td>
<td>28805.1</td>
<td>22632.58031</td>
<td>7%</td>
<td>12%</td>
<td>30%</td>
<td>51%</td>
</tr>
<tr>
<td>8/20/03</td>
<td>11933.94</td>
<td>0</td>
<td>29217.57</td>
<td>0</td>
<td>0</td>
<td>6767.71629</td>
<td>0</td>
<td>30%</td>
</tr>
<tr>
<td>9/17/03</td>
<td>14709.25</td>
<td>0</td>
<td>207197.1</td>
<td>55077.71629</td>
<td>0</td>
<td>0</td>
<td>58836.99281</td>
<td>12%</td>
</tr>
<tr>
<td>10/14/03</td>
<td>7090.237</td>
<td>3336.582</td>
<td>1668.291</td>
<td>29612.16746</td>
<td>10%</td>
<td>0%</td>
<td>0%</td>
<td>90%</td>
</tr>
<tr>
<td>11/19/03</td>
<td>11632.82</td>
<td>0</td>
<td>742.5202</td>
<td>0</td>
<td>0</td>
<td>742.5202</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>12/10/03</td>
<td>530</td>
<td>1077</td>
<td>0</td>
<td>0</td>
<td>742.5202</td>
<td>0</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>1/12/04</td>
<td>151</td>
<td>0</td>
<td>0</td>
<td>100988</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100988</td>
</tr>
<tr>
<td>2/18/04</td>
<td>0</td>
<td>0</td>
<td>41249</td>
<td>0</td>
<td>0</td>
<td>41249</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>4/14/04</td>
<td>8488</td>
<td>106101</td>
<td>0</td>
<td>97613</td>
<td>0</td>
<td>0</td>
<td>20496</td>
<td>0</td>
</tr>
<tr>
<td>5/24/04</td>
<td>2277</td>
<td>0</td>
<td>0</td>
<td>20496</td>
<td>0</td>
<td>0</td>
<td>20496</td>
<td>0</td>
</tr>
<tr>
<td>6/8/04</td>
<td>8230</td>
<td>16461</td>
<td>16461</td>
<td>164606</td>
<td>164606</td>
<td>164606</td>
<td>164606</td>
<td>164606</td>
</tr>
</tbody>
</table>

The BST data results indicate that the majority bacteria are coming from anthropogenic sources. Approximately 93% of the bacteria found in the Occupacia Creek study comes from human, pet, or livestock sources. The Technical Advisory Committee confirms a probable high concentration of hunting dogs in the watershed.
5.2. Point Sources

Bacteria loading from point sources such as sewage treatment plants, small commercial establishments, schools, homes and businesses require permits under the Virginia Pollution Discharge Elimination System (VPDES) permit program. In order to consider all such point-source discharges in the Occupacia Creek watershed, the DEQ comprehensive environmental database, regional DEQ permit staff, and local Virginia Department of Health (VDH) offices were all queried. There are currently no VPDES General Permits located within the Occupacia Creek watershed. There are two facilities that hold General Permits for Stormwater Construction: The Virginia Department of Transportation, Bowling Green (permit VAR103499), and the First Baptist Church of Loretto (permit VAR102506). Construction stormwater permits do not have bacterial permit limits, hence there are no permitted \(E. \ coli \) loads for these facilities. The permitted point sources are presented in Table 7.

<table>
<thead>
<tr>
<th>Stream Name</th>
<th>Facility Name</th>
<th>VPDES Permit Number</th>
<th>Discharge Type</th>
<th>Design Flow (MGD)</th>
<th>Permitted (E. \ coli) Limit (cfu/100 ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupacia Creek</td>
<td>First Baptist Church of Loretto</td>
<td>VAR102506</td>
<td>Stormwater Construction</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Occupacia Creek</td>
<td>VDOT Bowling Green</td>
<td>VAR103499</td>
<td>Stormwater Construction</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

Because no point sources with permitted bacterial limits exist in the Occupacia Creek watershed, the TMDL wasteload allocation will be set at one (1) percent of the total load allocation to account for future growth. This will account for future permits – such as VPDES general permits - which may be used as an alternative for failing septic tanks or potential straight pipes.

5.3. Non-Point Sources

In order to gain an understanding of non-point source loading in the Occupacia Creek watershed, bacteria loads for typical non-point sources were estimated. These estimates were based upon animal and human population data sets, typical waste production rates and typical bacteria densities in waste products.

Currently published values for fecal bacteria production rates are primarily in terms of fecal coliform. There is little data on \(E. \ coli \) production; however, studies have shown that though minor variability will exist between sources, \(E. \ coli \) represents roughly 90-95% of fecal coliforms contained in "as-excreted" fecal material (Yagow, 2002). This implies that the relative bacteria contribution by source should remain constant.

It is important to note that the bacteria loads presented in the following sections on non-point sources represent "as-produced" loads. This is to say that some portion of an estimated load may not be available to be transported to Occupacia Creek in runoff.
5.3.1. Humans and Pets

Bacteria loading from human sources can come from straight pipes, failing septic systems, and land-applied biosolids. Failing septic systems are typically manifested by effluent discharging to the ground surface where the bacteria laden effluent is then available to be washed into a stream as runoff during a precipitation event. In contrast, discharges from straight pipes are typically directly deposited to streams.

All biosolids can contain a certain concentration of fecal bacteria. When biosolids are applied to the land surface, the potential exists for a portion of these fecal bacteria to be transported to a stream as runoff during storm events.

Straight Pipes

The local health department reported no known straight pipes in the Occupacia Creek Watershed.

Septic Systems

Based on 2000 U.S. Census data, the Occupacia Creek watershed is populated by approximately 773 residents in approximately 322 households. This was derived from an area ratio of the [Occupacia Creek basin (49.1 sq. mi.) / [Essex County (257.8 sq. mi.)] multiplied by the population of Essex County (9989 persons) divided by 2.46 persons per household.

Assuming that 332 households with a population of 773 persons are on septic systems, with a wastewater production rate of 75 gallons per day per person (Geldreich, 1978), and a fecal coliform density in septic tank waste of $1.04 \times 10^6 \text{ cfu per 100 mL}$ (MapTech, 2002), the total septic load in the Occupacia Creek watershed is estimated to be 2.95×10^9 per day (Table 8a). Of this total septic load, only the load from failing septic systems would be available as runoff.

Table 8a. Estimated daily fecal coliform production from humans in the Occupacia Creek watershed.

<table>
<thead>
<tr>
<th>Source</th>
<th>Population</th>
<th>Waste Production Rate (/100ml/day/person)</th>
<th>Waste Fecal Coliform Density (cfu/100 ml)</th>
<th>Total Est. Daily Fecal Production (cfu/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Septic Systems</td>
<td>773</td>
<td>$75 \text{ gal/day/person x } 37.85412/100\text{mL/gal} = 2.84 \times 10^3$ *</td>
<td>1.04×10^6 **</td>
<td>2.95×10^9</td>
</tr>
</tbody>
</table>

* Geldreich, 1978. A conversion factor of 37.85412 was used to convert gallons to 100mL.

** MapTech, 2002 (Gills Creek TMDL Report).

Septic system failure rates depend largely on the age of the septic system. Based on the 2000 U.S. Census, and using a land area ratio of Occupacia Creek to Essex County, approximately 277 homes in the Occupacia Creek watershed were built prior to 1960. Surveys of failing septic systems in other Virginia watersheds have yielded a formula for calculating a rate of septic system failures for a given area. In the preparation of a TMDL report for the Goose Creek watershed in Loudoun County, VA, such a formula was used to estimate a septic system failure rate in Loudoun County. The estimated failure rate was calculated to be as high as 17% for some portions of the county (ICPRB, 2002). In the absence of a septic system survey, the Goose Creek TMDL report specified a failure rate of 5% (ICPRB, 2002). This figure is based on the calculated failure rate, the professional judgment of the local health department, and results of a BST study completed for the Goose Creek watershed.
For this TMDL we assumed a 10% failure rate, having referenced 5 to 17% rates. At the 10% failure rate, with an estimated annual production rate of 2.95×10^9 cfu/day, the daily septic loading available as runoff to Occupacia Creek was estimated to be 2.95×10^8 cfu/day.

Biosolids

In the Commonwealth of Virginia, the VDH and the DEQ regulate biosolids generation and application to the land surface. The DEQ regulates the generation of biosolids and the land application of those biosolids by the generator. The VDH regulates contractors who transport and spread biosolids; the biosolids can be from in-state or out-of-state sources.

Annual biosolids application reports on file with the VDH central office revealed there are currently 3 major operations permitted for biosolid application in Essex Co. (Nutri-Blend, Recyc Systems, Synagro). For the period 2001 – 2005, these operations applied a total of 22,135.93 tons of biosolids in the Occupacia and Farmers Hall Creek watersheds. All the biosolids were lime-stabilized, thus low viable fecal coliform bacteria should be expected, however Class B biosolids are permitted to contain fecal coliform bacteria up to $2,000,000$ cfu / gram dry weight. The applications are summarized in Table 8b. below.

<table>
<thead>
<tr>
<th>Stream</th>
<th>Tons</th>
<th># of Farms</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Tidal Occupacia Creek</td>
<td>7403.78</td>
<td>9</td>
<td>363.3*</td>
</tr>
<tr>
<td>Tidal Occupacia Creek</td>
<td>6774.35</td>
<td>3</td>
<td>277.9*</td>
</tr>
<tr>
<td>Black Water Swamp</td>
<td>2361.89</td>
<td>2</td>
<td>107.4*</td>
</tr>
<tr>
<td>Farmers Hall Creek</td>
<td>5595.91</td>
<td>5</td>
<td>320*</td>
</tr>
</tbody>
</table>

* - Excludes 2003 and 2005, acres not available.

Pets

The number of pets in the watershed was estimated based on the number of households. Assuming an average of 1.6 dogs and 2.2 cats per household (National Pet Owner Survey, American Pet Products Manufacturers Association, 2003-2004), the estimated pet population in the Occupacia Creek watershed consists of 515 dogs and 730 cats. Dog estimates were raised to 750 based on input from local stakeholders during the Occupacia Creek TMDL Technical Advisory Committee. Cats are estimated to have approximately one fifty-thousandth of the fecal coliform density of dogs, and thus are deemed insignificant in pet fecal bacteria production. Using the waste production rates and fecal coliform densities from MapTech, 2002, the total bacteria loads from dogs and cats in the Occupacia Creek watershed are 1.62×10^{11} and 1.27×10^5 cfu per day, respectively. Table 8c. presents the calculation of pet loads in the watershed. It should be noted that the numbers presented in Table 8c represent loads available for runoff and not in-stream loads.
Table 8c. Estimated fecal coliform production from pets in the Occupacia Creek watershed.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dogs</td>
<td>750 dogs</td>
<td>450 g/dog **</td>
<td>4.8 x 10^5 cfu/g **</td>
<td>1.62 x 10^{11} cfu/day</td>
</tr>
<tr>
<td>Cats</td>
<td>730 cats</td>
<td>19.4 g/cat **</td>
<td>9 cfu/g **</td>
<td>1.27 x 10^5 cfu/day</td>
</tr>
</tbody>
</table>

* Geldreich, 1978. A conversion factor of 37.85412 was used to convert gallons to 100mL.
** MapTech, 2002 (Gills Creek TMDL Report).

Estimated FC production rates are based on estimated data on households, pets/household, production rates, fecal coliform density etc. All these can vary widely. The assumptions we make on animal populations are the best available to us, and may not reflect pet E. coli load calculated by other means, i.e., the average load indicated by actual bacterial sampling.

5.3.2. Livestock

Fecal matter from livestock can be deposited directly to the stream in instances where livestock have stream access, or the fecal matter can be transported to the stream in surface runoff from grazing or pasture lands.

The predominant types of livestock in the Occupacia Creek watershed are cattle and horses, although all types of livestock were considered in developing the TMDL. The 2002 Census of Agriculture data for Essex County were used to estimate the livestock population in the watershed (http://151.121.3.33:8080/Census/Create_Census_US_CNTY.jsp). The Occupacia Creek watershed is located entirely within Essex County and approximately 12.9% of its watershed is pasture land. Table 9 presents the livestock population estimates, ranges of fecal production rates, and ranges of estimated annual fecal production in the watershed. The livestock populations were estimated using an area ratio of the total livestock within Essex County (164,991.3 acres)/Occupacia Creek watershed (31482.7.4 acres).

Table 9. Estimated annual fecal coliform production from livestock in the Occupacia Creek watershed.

<table>
<thead>
<tr>
<th>Source</th>
<th>Population</th>
<th>Range of Fecal Coliform Production Rates ≤ (cfu/animal/day)</th>
<th>Range of Daily Fecal Coliform Production ≤ (cfu/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Total Cattle</td>
<td>150</td>
<td>4.28 x 10^6</td>
<td>1.2 x 10^{12}</td>
</tr>
<tr>
<td>Pigs</td>
<td>74</td>
<td>5.01 x 10^6</td>
<td>1.72 x 10^{13}</td>
</tr>
<tr>
<td>Sheep / Goats</td>
<td>0</td>
<td>1.76 x 10^7</td>
<td>4.93 x 10^{11}</td>
</tr>
<tr>
<td>Horses</td>
<td>15</td>
<td>7.44 x 10^5</td>
<td>1.68 x 10^9</td>
</tr>
</tbody>
</table>

1 The cattle/calves, pigs and horse populations in the Occupacia Creek watershed were estimated by the 2002 Census for Agriculture for Essex County; using 17.2% of the County livestock population, based on area ratio of the Occupacia Creek watershed to Essex County.
2 VADCR, 2003
5.3.3. Wildlife

Like livestock, fecal matter from wildlife can be either deposited directly to the stream, or it can be transported to the stream in surface runoff from woods, pastureland and cropland. Direct deposition to streams varies with species, e.g. beaver spend most of their time in water; therefore most of their fecal matter would be directly deposited to the stream.

Wildlife populations in the Occupacia Creek watershed were estimated based on wildlife densities used in developing other bacterial TMDLs in Virginia in Table 10. Deer densities were supplied by a UVA deer population model for Hanover County. Turkey, muskrat, beaver, and duck densities were supplied by Maptech 2002. Raccoon densities were taken from Yagow 1999. Geese densities used were the highest found in final and draft TMDLs in Virginia, and came from the Catoctin Creek TMDL from Loudoun County. Because Essex County is closer to the eastern flyway than Loudoun County, there is certainly a higher percentage of migratory waterfowl. Habitat was assigned as follows:

- deer: all land use categories
- turkey: deciduous forest, evergreen forest, mixed forest
- muskrat: woody wetlands, emergent herbaceous wetlands, open water
- beaver: stream miles
- raccoon: low intensity residential, deciduous forest, evergreen forest, mixed forest, woody wetlands, row crops
- geese: pasture/hay, row crops, emergent herbaceous wetlands, open water
Table 10. Estimated fecal coliform production from wildlife in the Occupacia Creek watershed.

<table>
<thead>
<tr>
<th>Source</th>
<th>Population Density</th>
<th>Habitat</th>
<th>Watershed Population (animals)</th>
<th>Range of Daily Fecal Coliform Production<sup>1</sup> (cfu/an/day)</th>
<th>Range of Daily Fecal Coliform Production (cfu/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>low</td>
<td>high</td>
</tr>
<tr>
<td>Deer</td>
<td>0.020 an/ac</td>
<td>31482.7 ac</td>
<td>630</td>
<td>1.52 x 10<sup>8</sup></td>
<td>3.60 x 10<sup>8</sup></td>
</tr>
<tr>
<td>Turkey</td>
<td>0.01 an/ac</td>
<td>17543.8 ac</td>
<td>175</td>
<td>9.3 x 10<sup>7</sup></td>
<td></td>
</tr>
<tr>
<td>Muskrat</td>
<td>2.75 an/ac</td>
<td>3158.1 ac</td>
<td>8685</td>
<td>2.50 x 10<sup>7</sup></td>
<td>1.90 x 10<sup>8</sup></td>
</tr>
<tr>
<td>Beaver</td>
<td>4.800 an/mi</td>
<td>71.3 mi</td>
<td>342</td>
<td>3.00 x 10<sup>5</sup></td>
<td></td>
</tr>
<tr>
<td>Raccoon</td>
<td>0.070 an/ac</td>
<td>19257.8 ac</td>
<td>1348</td>
<td>2.05 x 10<sup>7</sup></td>
<td>9.45 x 10<sup>8</sup></td>
</tr>
<tr>
<td>Geese</td>
<td>0.020 an/ac</td>
<td>11357.8 ac</td>
<td>2270</td>
<td>4.86 x 10<sup>4</sup></td>
<td>2.25 x 10<sup>9</sup></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>3.57 x 10<sup>11</sup></td>
<td></td>
</tr>
</tbody>
</table>

¹VADCR, 2003

6. TMDL Development

One of the major obstacles to improving stream water quality is that the potential sources of bacteria are numerous and the dominant sources and/or pathways are generally unknown. This can make it difficult to direct effective cleanup efforts.

Typical pathogen TMDLs are completed by developing watershed-based computer simulations that establish links between sources and in-stream water quality. While effective, the effort required to develop modeled TMDLs can be costly. In an effort to complete pathogen TMDLs in a timely and cost-effective manner, the use of load-duration analyses has been investigated. It has been determined that the load-duration method of calculating a TMDL produces a result only slightly more conservative than if the TMDL had been determined through computer modeling.

The load duration method essentially uses an entire stream flow record to provide insight into the flow conditions under which exceedances of the water quality standard occur. Exceedances that occur under low flow conditions are generally attributed to loads delivered directly to the stream such as straight pipes and livestock with access to the stream. Exceedances that occur under high flow conditions are typically attributed to loads that are delivered to the stream in stormwater runoff. Exceedances occurring during normal flows can be attributed to a combination of runoff and direct deposits.

The following sections detail the development of the load-duration TMDL and associated allocations.

6.1. Load-Duration Curve

Development of a load-duration curve begins with a flow-duration curve, and in order to develop a meaningful flow-duration curve one must have several years of flow data for the target stream or river. Where very little flow data exists for a target stream, a reference stream with the requisite flow...
measurements must be used similar to the paired watershed approach used in watershed-based modeling. Such is the case for Occupacia Creek.

The following sections detail the flow data for Occupacia Creek, the selection of a reference stream, development of a flow-duration curve for Occupacia Creek, and the creation of a load-duration curve for Occupacia Creek.

6.1.1. Flow Data

Occupacia Creek is located in Essex County and has a drainage area of 49.1 square miles and is a minor tributary to the Rappahannock River. Farmers Hall Creek is a tributary to Occupacia Creek. There is no continuous flow gaging station on Occupacia Creek, therefore a reference gaging station must be selected.

6.1.2. Reference Stream

In order to develop a flow-duration curve for Occupacia Creek, it was necessary to select a reference stream with a gage having a period of record of no less than ten years.

In selecting a reference gage several factors must be considered. Among these are proximity, watershed topography, watershed size and geology. The period of record for the reference gage must also include dates that coincide with flow measurements made at the target stream - in this case Occupacia Creek. The ultimate goal is to find a gaged stream that behaves like the target stream.

For the Occupacia Creek analysis, Little River near Doswell, VA (#01671100), Piscataway Creek near Tappahannock, VA (#01669000), Po River near Spotsylvania, VA (#01673800), and Totopotomoy Creek near Studley, VA (#01673550) were considered as possible reference gages. The Little River had the strongest correlation with an R value of 0.88; however this stream is a tributary to the South Anna River in the Piedmont Physiographic region in Hanover County. The Piscataway River, a tributary to the Rapphannock River, was determined to be the best reference stream due to its strong correlation (R value of 0.85). The Piscataway River has similar land and is located within 10 miles of Occupacia Creek. Details of the correlation analysis and reference stream selection are presented in Appendix D.

6.1.3. Flow-Duration Curves

In order to use the load-duration method to develop a TMDL, a flow-duration curve must be developed for the impaired stream. This is accomplished by first developing a flow-duration curve for the reference Piscataway Creek gage. Then to generate a flow-duration curve for Occupacia Creek the Piscataway Creek flows corresponding to the percentiles 1%, 5%, 10%…90%, 95%, 99% were plugged into the regression equation \(y = 0.9692x^{0.09413} \) obtained from the flow regression for Occupacia Creek with Piscataway Creek, and a set of flows was generated for Occupacia Creek. The generated flows were plotted against the percentiles from above, and a flow duration curve was drawn for Occupacia Creek (Figure 9).

Flows for Farmers Hall Creek were determined by drainage area ratio between the sample location on Occupacia Creek (at 30.2 mi\(^2\)) and the sample location on Farmers hall Creek (3.65 mi\(^2\)), resulting in Farmers hall Creek flow at 12 percent of Occupacia Creek flow. The generated Farmers Hall Creek flows were plotted against the percentiles from above, and a flow duration curve was drawn for Farmers Hall Creek (Figure 10).

A flow-duration curve is a plot showing the flow magnitude (cfs) along the “y” axis and the frequency of daily average stream flow (%) along the “x” axis. For example, the flow value corresponding to “1%” is the flow that has been exceeded only 1% of the time for which measurements exist. Likewise, the flow value corresponding to “30%” is the flow that 30% of the historic record exceeds.

To plot the flow values for the period of record of the reference stream, the PERCENTILE statistic function of Excel was used. The resulting percentile of a given flow was then subtracted from 1 to yield the percent...
of time that a given flow is exceeded by the flows of record. The flow duration interval values were plotted with the corresponding flows to yield a log/normal flow duration curve.

The flow-duration curves for Occupacia Creek and Farmers Hall Creek have been divided into four sections to help illustrate flow conditions. These sections are titled "High Flows", "Transition Flows", "Normal Flows", and "Low Flows". Low flows can be roughly equated to near-drought or drought flows. High flows are near-flood or flood flows. Transition flows are, as implied, neither normal nor high.

Figure 9. Flow-duration curve for Occupacia Creek at Route 17, near Chance, VA (station 3-OCC010.47).
Figure 10. Flow-duration curve for Farmers Hall Creek at Route 631 (station 3-FAR002.88).
6.1.4. Load-Duration Curve

As mentioned in Section 3, all of the instream water quality observations on Occupacia Creek were collected at Station 3-OCC010.47, therefore this station is the focus of the load-duration analysis on Occupacia Creek.

A load-duration curve is developed by multiplying each flow level along the flow-duration curve by the applicable water quality standard and required unit conversions. The resulting curve represents the maximum allowable load at each flow level, in other words, the Total Maximum Daily Load (TMDL). Each water quality observation is then assigned to a flow interval by comparing the date of each water quality observation to the flow record of the reference stream. The reference stream flow from the date of the water quality observation is then used to calculate a stream flow and flow-duration interval for the target stream.

In previous TMDLs using this methodology, the curve was transformed from daily loads to annual loads by multiplying each point along the curve by 365. This step was omitted in this TMDL to meet EPA’s new requirement for representing TMDLs as daily loads.

In order to plot existing fecal coliform (FC) data against the *E. coli* (EC) standard/TMDL line, it was necessary to translate the FC data to EC data. Translation of FC data to EC data was achieved by using a translator equation developed from a regression analysis of 493 paired FC/EC data sets from the DEQ’s statewide monitoring network. The translator equation resulting from the regression analysis is presented below:

\[
EC \log_2 = -0.0172 + 0.91905 \times FC \log_2
\]

This translator equation may cause a slightly different number of water quality standard violations as shown in Figures 7 and 8 versus bacterial load exceedances as shown in Figures 11 and 12. This is because of the variance of the translator equation related to specific fecal coliform results near the water quality standard.

By plotting these observed loads on the load-duration curve, the number and pattern of exceedances of the water quality standard (TMDL) can be analyzed. The load duration curve and observed data for Occupacia Creek are shown in Figure 11. The TMDL line has been plotted for the instantaneous *E. coli* standard of 235 cfu/100mL.
Figure 11 suggests that exceedances of the water quality standard occur under all flow conditions. The highest exceedance of the water quality standard occurred at low flow (91% flow interval at 4.24 cfs, and 99% flow interval at 0.96 cfs, circled in red). These represent the flow condition under which the largest bacteria reduction is required in order to meet water quality standards. The translated load at the low flow condition was 2.77×10^{11} cfu/day. Under the instantaneous *E. coli* standard of 235 cfu/100mL, this load would have to be reduced by 91% to an allowable load of 2.44×10^{10} cfu/day at low flow. As can be seen on Figure 11, the allowable daily load is variable with flow along the curve and represents simply the *E. coli* standard multiplied by the applicable flow condition and the proper unit conversions. The full calculation with unit conversions is presented in Appendix C.

The same load duration curve was generated for the observed data of Farmers Hall Creek, which are presented in Figure 12. The highest bacteria exceedance of water quality standards occurred at 1.21 cfs, a 74% flow interval. The translated load at low flow was 4.47×10^{10} cfu/day. To be under the instantaneous *E. coli* standard of 235 cfu/100 mL, this load would have to be reduced by 84% to an allowable daily load of 6.98×10^9 cfu/day at low flow.
Figure 12. Load duration curve and observed data for Farmers Hall Creek at station 3-FAR002.88.

Because the allowable load is variable with flow and represents simply the E. coli standard multiplied by the applicable flow condition and the proper unit conversions, the TMDL condition will be selected to reflect the flow-varying nature of bacteria impairments. In order to capture all flow conditions, the TMDL will be determined for the 99th load percentile, i.e. for the 1% flow duration interval. This represents the maximum flow condition determined for Occupacia Creek from available flow records. To determine the necessary load reduction at this maximum flow condition, a second curve must be drawn through the highest exceedance described above. The second curve represents the magnitude of the highest observed exceedance if it were to occur over any flow condition. The graph of the load-duration curve with the max-exceedance curve is presented in Figure 13 for Occupacia Creek, and Figure 14 for Farmers Hall Creek.
Figure 13. Load duration curve with maximum exceedance curve for Occupacia Creek at station 3-OCC010.47.
Figure 14. Load duration curve with max exceedance curve for Farmers Hall Creek at station 3-FAR002.88.

6.2 TMDL

A Total Maximum Daily Load (TMDL) consists of 1) point source/waste load allocations (WLAs), 2) non-point sources/load allocations (LAs) where the non-point sources include natural/background levels, and 3) a margin of safety (MOS) where the margin of safety may be implicitly or explicitly defined. TMDLs contain an expansion factor for growth of existing or new point source WLAs. This TMDL definition is typically illustrated by the following equation:

$$\text{TMDL} = \text{WLAs} \text{ (including 1\% Future Growth Factor)} + \text{LAs} + \text{MOS}$$

Simply put, a TMDL is the amount of a pollutant that can be present in a waterbody where the waterbody will still meet water quality standards for that pollutant. In the case of load-duration bacteria TMDLs, the TMDL is expressed as the total number of colony forming units (cfu) per day for the 99th load percentile.

The 99th percentile flow for Occupacia Creek is calculated from the regression equation:

$$y = 0.9692x^{0.9413}$$

and the 99th percentile flow from the reference gage. The estimated 99th percentile flow for Occupacia Creek is 150 cfs. This flow value has an associated flow duration of 1\%. From this information an average annual \textit{E. coli} load and TMDL can be calculated from the max-exceedance and TMDL curves. This is
represented graphically in Figure 15. Farmers Hall Creek is presented in Figure 16, where the 99th percentile flow is 15 cfs with associated flow duration of 1%. The full calculation is presented in Appendix C.

Figure 15. Load duration curve illustrating the TMDL and estimated daily *E. coli* load for Occupacia Creek at station 3-OCC010.47.
For Occupacia Creek the one percent flow duration daily \(E. coli \) load is \(7.10 \times 10^{12} \) cfu/day, and the daily TMDL load under one percent flow duration is \(6.27 \times 10^{11} \) cfu/day. For Farmers Hall Creek the one percent flow duration daily \(E. coli \) load is \(4.73 \times 10^{11} \) cfu/day, and the daily TMDL load under one percent flow duration is \(7.58 \times 10^{10} \) cfu/day. These values are used to calculate required reductions. Although there are no point sources with bacterial permit limits in either watershed, it is reasonable to assume future growth will occur. For this reason, a wasteload allocation (WLA) is set for one (1) percent of the total load allocation. This totals \(6.27 \times 10^9 \) cfu/day and \(7.58 \times 10^8 \) cfu/day for Occupacia Creek and Farmers Hall Creek, respectively. The remaining load allocations (LA) address allowable non-point source bacterial contributions.

These TMDL, WLA and LA are presented as daily loads in Table 11 for Occupacia Creek and Table 12 for Farmers Hall Creek.
Table 11. Average Daily *E. coli* loads and TMDL for Occupacia Creek watershed (cfu/day).

<table>
<thead>
<tr>
<th>WLA(^2)</th>
<th>LA</th>
<th>MOS</th>
<th>TMDL(^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.27 x 10(^9)</td>
<td>6.21 x 10(^{11})</td>
<td>(implicit)</td>
<td>6.27 x 10(^{11})</td>
</tr>
</tbody>
</table>

1 – The TMDL is presented for the 99\(^{th}\) percentile daily flow condition at the numeric water quality criterion of 235 cfu/100ml. The TMDL is variable along the TMDL curve depending on flow conditions. The numeric water quality criterion will be used to assess progress toward TMDL goals.

2 – The WLA reflects an allocation for potential future permits issued for bacteria control. Any issued permit will include bacteria effluent limits in accordance with applicable permit guidance and will ensure that the discharge meets the applicable numeric water quality criteria for bacteria at the end-of-pipe.

Table 12. Average Daily *E. coli* loads and TMDL for Farmers Hall Creek watershed (cfu/day).

<table>
<thead>
<tr>
<th>WLA(^2)</th>
<th>LA</th>
<th>MOS</th>
<th>TMDL(^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.58 x 10(^8)</td>
<td>7.50 x 10(^{10})</td>
<td>(implicit)</td>
<td>7.58 x 10(^{10})</td>
</tr>
</tbody>
</table>

1 – The TMDL is presented for the 99\(^{th}\) percentile daily flow condition at the numeric water quality criterion of 235 cfu/100ml. The TMDL is variable along the TMDL curve depending on flow conditions. The numeric water quality criterion will be used to assess progress toward TMDL goals.

2 – The WLA reflects an allocation for potential future permits issued for bacteria control. Any issued permit will include bacteria effluent limits in accordance with applicable permit guidance and will ensure that the discharge meets the applicable numeric water quality criteria for bacteria at the end-of-pipe.

7. Allocations

Reduction

The daily TMDL and *E. coli* load values from section 6.2, together with the one percent WLA for future expansion in the watersheds, were plugged into Tables 13 and 14 below to determine the required reductions. Since the required reductions will only apply to the non-point sources, the LA value was used to calculate the required percent reductions. Tables 13 and 14 show the required LA reductions for Occupacia and Farmers Hall Creeks. The full calculations are presented in Appendix C.

Table 13. Daily TMDL and required reduction for Occupacia Creek.

<table>
<thead>
<tr>
<th>Allowable Loads (cfu/day)</th>
<th>Daily EC Load (cfu/day)</th>
<th>Required Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMDL (daily)(^1)</td>
<td>6.27 x 10(^{11})</td>
<td></td>
</tr>
<tr>
<td>Wasteload Allocation (WLA)(^2) 1%</td>
<td>6.27 x 10(^8)</td>
<td></td>
</tr>
<tr>
<td>MOS (implicit)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load Allocation (LA)</td>
<td>6.21 x 10(^{11})</td>
<td>7.10 x 10(^{12})</td>
</tr>
</tbody>
</table>

1 – The TMDL is presented for the 99\(^{th}\) percentile daily flow condition at the numeric water quality criterion of 235 cfu/100ml. The TMDL is variable along the TMDL curve depending on flow conditions. The numeric water quality criterion will be used to assess progress toward TMDL goals.

2 – The WLA reflects an allocation for potential future permits issued for bacteria control. Any issued permit will include bacteria effluent limits in accordance with applicable permit guidance and will ensure that the discharge meets the applicable numeric water quality criteria for bacteria at the end-of-pipe.
Table 14. TMDL and required reduction for Farmers Hall Creek.

<table>
<thead>
<tr>
<th>Allowable Loads (cfu/day)</th>
<th>Daily EC Load (cfu/day)</th>
<th>Required Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMDL (daily)¹</td>
<td>7.58 x 10¹⁰</td>
<td></td>
</tr>
<tr>
<td>Wasteload Allocation (WLA)² 1%</td>
<td>7.58 x 10⁸</td>
<td></td>
</tr>
<tr>
<td>MOS</td>
<td>(implicit)</td>
<td></td>
</tr>
<tr>
<td>Load Allocation (LA)</td>
<td>7.50 x 10¹⁰</td>
<td>4.73 x 10¹¹</td>
</tr>
</tbody>
</table>

¹ – The TMDL is presented for the 99th percentile daily flow condition at the numeric water quality criterion of 235 cfu/100ml. The TMDL is variable along the TMDL curve depending on flow conditions. The numeric water quality criterion will be used to assess progress toward TMDL goals.

² – The WLA reflects an allocation for potential future permits issued for bacteria control. Any issued permit will include bacteria effluent limits in accordance with applicable permit guidance and will ensure that the discharge meets the applicable numeric water quality criteria for bacteria at the end-of-pipe.

Margin of Safety

This requirement is intended to add a level of safety to account for any inherent uncertainty in the TMDL development process and the data used in the development. The MOS may be either implicit or explicit. An implicit margin of safety relies on the conservative nature of the assumptions, values, and methods used to calculate a TMDL whereas an explicit margin of safety is a value (typically a percentage) applied at some point during the TMDL calculation.

In the Occupacia Creek TMDL, an implicit MOS was incorporated through the use of conservative analytical assumptions. These include: (1) the use of the single-most extreme water quality violation event which was used to develop maximum exceedance curve over the entire range of flow conditions, and (2) the computation of average annual load using the average flow conditions. Additionally, the load duration method of TMDL development has been evaluated against TMDLs that were developed using computer modeling. The results showed the load duration method to be slightly more conservative.
Allocations

In order to apply the reduction calculated above, the daily *E. coli* loads had to be allocated to each of the four non-point sources identified in the BST analysis. Table 15 shows the distribution of the daily *E. coli* load among sources (derived by multiplying the daily load by the weighted BST source percent for each of the four source groups), the reduction applied to each source, and the allowable loading for each source, for Occupacia Creek. Table 16 shows these for Farmers Hall Creek. Theoretically these reductions would reduce the *E. coli* load to the water quality standard, resulting in zero violations.

Table 15. Daily load distribution, reduction, and allowable load by source for Occupacia Creek.

<table>
<thead>
<tr>
<th>Source</th>
<th>Daily Load (cfu/day)</th>
<th>Reduction</th>
<th>Allowable Load Allocation/TMDL (cfu/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>7.10 x 10^{12}</td>
<td>91.3%</td>
<td>6.21 x 10^{11}</td>
</tr>
<tr>
<td>Human @ 12%</td>
<td>8.52 x 10^{11}</td>
<td>99%</td>
<td>8.52 x 10^{9}</td>
</tr>
<tr>
<td>Pet @ 51%</td>
<td>3.62 x 10^{12}</td>
<td>98%</td>
<td>7.24 x 10^{10}</td>
</tr>
<tr>
<td>Livestock @ 30%</td>
<td>2.13 x 10^{12}</td>
<td>98%</td>
<td>4.26 x 10^{10}</td>
</tr>
<tr>
<td>Wildlife @ 7%</td>
<td>4.97 x 10^{11}</td>
<td>0%</td>
<td>4.97 x 10^{11}</td>
</tr>
</tbody>
</table>

Table 16. Daily load distribution, reduction, and allowable load by source for Farmers Hall Creek.

<table>
<thead>
<tr>
<th>Source</th>
<th>Daily Load (cfu/day)</th>
<th>Reduction</th>
<th>Allowable Load Allocation/TMDL (cfu/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>4.73 x 10^{11}</td>
<td>84.1%</td>
<td>7.50 x 10^{10}</td>
</tr>
<tr>
<td>Human @ 12%</td>
<td>5.68 x 10^{10}</td>
<td>99%</td>
<td>5.68 x 10^{8}</td>
</tr>
<tr>
<td>Pet @ 51%</td>
<td>2.41 x 10^{11}</td>
<td>89.2%</td>
<td>2.60 x 10^{10}</td>
</tr>
<tr>
<td>Livestock @ 30%</td>
<td>1.42 x 10^{11}</td>
<td>89.2%</td>
<td>1.53 x 10^{10}</td>
</tr>
<tr>
<td>Wildlife @ 7%</td>
<td>3.31 x 10^{10}</td>
<td>0%</td>
<td>3.31 x 10^{10}</td>
</tr>
</tbody>
</table>

7.1. Consideration of Critical Conditions

EPA regulations at 40 CFR 130.7 (c)(1) require TMDLs to take into account critical conditions for stream flow, loading, and water quality parameters. The intent of this requirement is to ensure that the water quality of Occupacia Creek is protected during times when conditions are most conducive for water quality criteria exceedances.

Critical conditions are important because they describe the factors that combine to cause a violation of water quality standards and will help in identifying the actions that may have to be undertaken to meet water quality standards. The sources of bacteria for Occupacia Creek are a mixture of low and normal flow-driven sources. TMDL development utilizing the load-duration approach applies to the full range of flow conditions; therefore, the critical conditions for Occupacia Creek were addressed during TMDL development.
7.2. Consideration of Seasonal Variations

Seasonal variations involve changes in stream flow and water quality as a result of hydrologic and climatological patterns. The load-duration approach allows the pattern of water quality exceedances to be examined for seasonal variations. The load-duration method used to develop this TMDL implicitly incorporates the seasonal variations of precipitation and runoff by looking at the highest water quality violation and applying it to the entire stream flow record when calculating the TMDL.

8.0 TMDL Implementation

The goal of the TMDL program is to establish a three-step path that will lead to attainment of water quality standards. The first step in the process is to develop TMDLs that will result in meeting water quality standards. This report represents the culmination of that effort for the bacteria impairments on Occupacia Creek. The second step is to develop a TMDL implementation plan. The final step is to implement the TMDL implementation plan, and to monitor stream water quality to determine if water quality standards are being attained.

Once a TMDL has been approved by EPA, measures must be taken to reduce pollution levels in the stream. These measures, which can include the use of better treatment technology and the installation of best management practices (BMPs), are implemented in an iterative process that is described along with specific BMPs in the implementation plan. The process for developing an implementation plan has been described in the recent “TMDL Implementation Plan Guidance Manual”, published in July 2003 and available upon request from the DEQ and DCR TMDL project staff or at http://www.deq.virginia.gov/tmdl/implans/ipguide.pdf. With successful completion of implementation plans, Virginia will be well on the way to restoring impaired waters and enhancing the value of this important resource. Additionally, development of an approved implementation plan will improve a locality’s chances for obtaining financial and technical assistance during implementation.

8.1 Staged Implementation

In general, Virginia intends for the required reductions to be implemented in an iterative process that first addresses those sources with the largest impact on water quality. For example, in agricultural areas of the watershed, the most promising management practice is livestock exclusion from streams. This has been shown to be very effective in lowering bacteria concentrations in streams, both by reducing the cattle deposits themselves and by providing additional riparian buffers.

Additionally, in both urban and rural areas, reducing the human bacteria loading from failing septic systems should be a primary implementation focus because of its health implications. This component could be implemented through education on septic tank pump-outs as well as a septic system repair/replacement program and the use of alternative waste treatment systems.

In urban areas, BMPs that might be appropriate for controlling urban wash-off from parking lots and roads and that could be readily implemented may include more restrictive ordinances to reduce fecal loads from pets, improved garbage collection and control, and improved street cleaning.

The iterative implementation of BMPs in the watershed has several benefits:

1. It enables tracking of water quality improvements following BMP implementation through follow-up stream monitoring;
2. It provides a measure of quality control, given the uncertainties inherent in computer simulation modeling;
3. It provides a mechanism for developing public support through periodic updates on BMP implementation and water quality improvements;
4. It helps ensure that the most cost effective practices are implemented first; and
5. It allows for the evaluation of the adequacy of the TMDL in achieving water quality standards.

Watershed stakeholders will have opportunity to participate in the development of the TMDL implementation plan. While specific goals for BMP implementation will be established as part of the implementation plan development, the following stage 1 scenarios are targeted at controllable, anthropogenic bacteria sources and can serve as starting points for targeting BMP implementation activities.

8.2. Stage 1 scenarios

The goal of the stage 1 scenarios is to reduce the bacteria loadings from controllable sources (excluding wildlife) such that violations of the single sample maximum criterion (235 cfu/100mL) are less than 10 percent. The stage 1 scenarios were generated with the same model setup as was used for the TMDL allocation scenarios. A margin of safety was not used in determining the stage 1 scenarios.

As stated in Section 7 the TMDL requires a 91% reduction in non-point source loading for Occupacia Creek in order to attain a 0% violation of water quality standards. In order to evaluate interim reduction goals for a phased implementation plan, several reduction levels and their associated violation rates were assessed. Reduction curves for 85%, 70%, and 45% reductions, similar to the max exceedance/reduction curve of Figure 13, were plotted on the Occupacia Creek load-duration curve. These reduction curves are presented in Figure 17 for Occupacia Creek and Figure 18 for Farmers Hall Creek.
Figure 17. Daily load duration curve illustrating the TMDL and reduction curves for Occupacia Creek at station 3-OCC010.47.
Figure 18. Daily load duration curve illustrating the TMDL and reduction curves for Farmers Hall Creek at station 3-FAR002.88.

For Occupacia Creek, the theoretical violation rates for the various load reductions (Figure 17) are shown below in Table 17. These were calculated by dividing the number of E. coli load datapoints above each respective % reduction curve by the total number of E. coli load datapoints (58).

<table>
<thead>
<tr>
<th>Load Reduction</th>
<th>Violation Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>91%</td>
<td>0%</td>
</tr>
<tr>
<td>85%</td>
<td>3.4%</td>
</tr>
<tr>
<td>70%</td>
<td>5.2%</td>
</tr>
<tr>
<td>45%</td>
<td>10.3%</td>
</tr>
</tbody>
</table>

Based on the reduction analysis presented above and a goal of 10% or fewer violations of the water quality standard, a suitable Phase I reduction level for Occupacia and Farmers Hall Creeks would be 45%. Table 18 presents the Phase I load allocations for Occupacia Creek based on a 45% reduction of in-stream loads.

Table 18. Phase I Load Allocations (based on a 45% reduction).

<table>
<thead>
<tr>
<th></th>
<th>Total (cfu/day)</th>
<th>Human @ 12% (cfu/day)</th>
<th>Pet @ 51% (cfu/day)</th>
<th>Livestock @ 30% (cfu/day)</th>
<th>Wildlife @ 7% (cfu/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily Load</td>
<td>7.10×10^{12}</td>
<td>8.52×10^{11}</td>
<td>3.62×10^{12}</td>
<td>2.13×10^{12}</td>
<td>4.97×10^{11}</td>
</tr>
<tr>
<td>Reduction</td>
<td>45.0%</td>
<td>99%</td>
<td>41%</td>
<td>41%</td>
<td>0%</td>
</tr>
<tr>
<td>Target Daily Load</td>
<td>3.90×10^{12}</td>
<td>8.52×10^{9}</td>
<td>2.14×10^{12}</td>
<td>1.25×10^{12}</td>
<td>4.97×10^{11}</td>
</tr>
</tbody>
</table>
At the 45 percent daily load reduction level, which results in a 10.3% violation rate, the total allowable daily load is greater than the wildlife load. A 98% to 99% (from Table 15) reduction in human, pet and livestock *E. coli* loads may not be needed to return *E. coli* loads and percent violations less than 10 percent above the water quality standard. The use of staged implementation may show that the TMDL reduction may be reached without implementation of all available BMPs.

In order to provide some insight into the nature of the Occupacia Creek water quality violations and to better target possible BMPs, the correlation between violations, stream flow change, and local precipitation was examined.

Results indicate that approximately 62% of the violations occurred during times of precipitation and increasing stream flow or just after a precipitation event with stable or decreasing stream flow. This suggests that those violations could be related to runoff events. The complete analysis is presented in Appendix E.

BMPs effective in correcting dry weather/low-flow violations of the bacteria water quality standard typically include: streamside fencing for cattle exclusion, straight pipe replacement, and septic system repair. Among some of the BMPs effective in reducing bacteria runoff from precipitation events include: riparian buffers zone, retention ponds/basins, range and pasture management, and animal waste management. Detailed lists of BMPs and their relative effectiveness will be presented in the eventual TMDL implementation plan for the Occupacia Creek watershed.

8.2.1 Link to Ongoing Restoration Efforts

Implementation of this TMDL will contribute to on-going water quality improvement efforts aimed at restoring water quality in the Chesapeake Bay. A tributary strategy has recently been developed for the York River Basin to address the nutrient and sediment reductions required to restore the health of the Chesapeake Bay. Up-to-date information on this effort and others throughout Virginia can be found at the tributary strategy web site under http://www.naturalresources.virginia.gov/Initiatives/WaterQuality/.

8.3 Reasonable Assurance for Implementation

8.3.1 Follow-Up Monitoring

VADEQ will continue monitoring 3-OCC010.47 in accordance with its ambient watershed monitoring program to evaluate reductions in fecal bacteria counts and the effectiveness of TMDL implementation in attainment of water quality standards. This station will be monitored for a two-year cycle, occurring every six years. Occupacia Creek is currently being monitored during the period July 1, 2005 through December 2006. The next ambient watershed monitoring cycle for Occupacia Creek will begin in January 2011 for two years on a bi-monthly basis, unless required sooner to monitor TMDL implementation progress.

8.3.2 Regulatory Framework

While section 303(d) of the Clean Water Act and current EPA regulations do not require the development of TMDL implementation plans as part of the TMDL process, they do require reasonable assurance that the load and wasteload allocations can and will be implemented. Additionally, Virginia’s 1997 Water Quality Monitoring, Information and Restoration Act (the “Act”) directs the State Water Control Board to “develop and implement a plan to achieve fully supporting status for impaired waters” (Section 62.1-44.19.7). The Act also establishes that the implementation plan shall include the date of expected achievement of water quality objectives, measurable goals, corrective actions necessary and the associated costs, benefits and environmental impacts of addressing the impairments. EPA outlines the minimum elements of an
approvable implementation plan in its 1999 “Guidance for Water Quality-Based Decisions: The TMDL Process.” The listed elements include implementation actions/management measures, timelines, legal or regulatory controls, time required to attain water quality standards, monitoring plans and milestones for attaining water quality standards.

Watershed stakeholders will have opportunities to provide input and to participate in the development of the implementation plan, which will also be supported by regional and local offices of DEQ, DCR, and other cooperating agencies.

Once developed, DEQ intends to incorporate the TMDL implementation plan into the appropriate Water Quality Management Plan (WQMP), in accordance with the Clean Water Act’s Section 303(e). In response to a Memorandum of Understanding (MOU) between EPA and DEQ, DEQ also submitted a draft Continuous Planning Process to EPA in which DEQ commits to regularly updating the WQMPs. Thus, the WQMPs will be, among other things, the repository for all TMDLs and TMDL implementation plans developed within a river basin.

8.3.3. Implementation Funding Sources

One potential source of funding for TMDL implementation is Section 319 of the Clean Water Act. Section 319 funding is a major source of funds for Virginia’s Nonpoint Source Management Program. Other funding sources for implementation include the U.S. Department of Agriculture’s Conservation Reserve Enhancement and Environmental Quality Incentive Programs, the Virginia State Revolving Loan Program, and the Virginia Water Quality Improvement Fund. The TMDL Implementation Plan Guidance Manual contains additional information on funding sources, as well as government agencies that might support implementation efforts and suggestions for integrating TMDL implementation with other watershed planning efforts.

8.3.4 Addressing Wildlife Contributions

While it does not appear to be the case with Occupacia Creek, in some streams for which TMDLs have been developed, water quality modeling indicates that even after removal of all bacteria sources (other than wildlife), the stream may not attain standards under all flow regimes at all times. Such streams may not be able to attain standards without some reduction in wildlife load. **Virginia and EPA are not proposing the elimination of wildlife to allow for the attainment of water quality standards.** While managing overpopulations of wildlife remains as an option to local stakeholders, the reduction of wildlife or changing a natural background condition is not the intended goal of a TMDL.

To address this issue, Virginia has proposed (during its recent triennial water quality standards review) a new “secondary contact” category for protecting the recreational use in state waters. On March 25, 2003, the Virginia State Water Control Board adopted criteria for “secondary contact recreation” which means “a water-based form of recreation, the practice of which has a low probability for total body immersion or ingestion of waters (examples include but are not limited to wading, boating and fishing)”. These new criteria will become effective pending EPA approval and can be found at http://www.deq.state.va.us/wgs/rule.html.

In order for the new criteria to apply to a specific stream segment, the primary contact recreational use must be removed. To remove a designated use, the state must demonstrate 1) that the use is not an existing use, 2) that downstream uses are protected, and 3) that the source of bacterial contamination is natural and uncontrollable by effluent limitations and by implementing cost-effective and reasonable best management practices for nonpoint source control (9 VAC 25-260-10). This and other information is collected through a special study called a Use Attainability Analysis (UAA). All site-specific criteria or designated use changes must be adopted as amendments to the water quality standards regulations. Watershed stakeholders and EPA will be able to provide comment during this process.
Based on the above, EPA and Virginia have developed a process to address the wildlife issue. First in this process is the development of a stage 1 scenario such as those presented previously in this chapter. The pollutant reductions in the stage 1 scenario are targeted only at the controllable, anthropogenic bacteria sources identified in the TMDL, setting aside control strategies for wildlife except for cases of overpopulations. During the implementation of the stage 1 scenario, all controllable sources would be reduced to the maximum extent practicable using the iterative approach described in section 8.1 above. DEQ will re-assess water quality in the stream during and subsequent to the implementation of the stage 1 scenario to determine if the water quality standard is attained. This effort will also evaluate if the modeling assumptions were correct. If water quality standards are not being met, a UAA may be initiated to reflect the presence of naturally high bacteria levels due to uncontrollable sources. In some cases, the effort may never have to go to the UAA phase because the water quality standard exceedances attributed to wildlife in the model may have been very small and infrequent and within the margin of error.

9. Public Participation

The development of the Occupacia Creek TMDL is not possible without public participation. A public meeting was held at the Essex County Public Library in Tappahannock, VA at 7 pm on August 16, 2006 to discuss the process for TMDL development and the source assessment input, which 6 persons attended. A Technical Advisory Committee meeting was held at the Essex County Public Library at 2 pm on November 15, 2006, which 5 persons attended. A final public meeting was held at the Essex County Public Library at 7 pm on November 30, 2006 to discuss the TMDL results and the draft report, including load allocations, which 5 persons attended. Copies of presentation materials were made available for public distribution. The public and TAC meetings were public noticed in the Virginia Register. 30 day-public comment periods were held after each public and TAC meeting in which no comments were received.
10. References

ICPRB (Interstate Commission on the Potomac River), Bacteria TMDLs for the Goose Creek Watershed, Virginia, 2002.

SRCC (Southeast Regional Climate Center) http://www.dnr.state.sc.us/climate/sercc/products/historical/historical_va.html

VADEQ (Virginia Department of Environmental Quality), 2002 305(b) Water Quality Assessment Report on Impaired Waters.

VADEQ (Virginia Department of Environmental Quality), 2004 305(b)/303(d) Water Quality Assessment Integrated Report.

Appendix A

Glossary
GLOSSARY

Note: All entries in italics are taken from USEPA (1998). All non-italicized entries are taken from MapTech (2002).

303(d). A section of the Clean Water Act of 1972 requiring states to identify and list water bodies that do not meet the states’ water quality standards.

Allocations. That portion of a receiving water's loading capacity attributed to one of its existing or future pollution sources (nonpoint or point) or to natural background sources. (A wasteload allocation [WLA] is that portion of the loading capacity allocated to an existing or future point source, and a load allocation [LA] is that portion allocated to an existing or future nonpoint source or to natural background levels. Load allocations are best estimates of the loading, which can range from reasonably accurate estimates to gross allotments, depending on the availability of data and appropriate techniques for predicting loading.)

Ambient water quality. Natural concentration of water quality constituents prior to mixing of either point or nonpoint source load of contaminants. Reference ambient concentration is used to indicate the concentration of a chemical that will not cause adverse impact on human health.

Anthropogenic. Pertains to the [environmental] influence of human activities.

Antidegradation Policies. Policies that are part of each states water quality standards. These policies are designed to protect water quality and provide a method of assessing activities that might affect the integrity of waterbodies.

Background levels. Levels representing the chemical, physical, and biological conditions that would result from natural geomorphological processes such as weathering or dissolution.

Bacteria. Single-celled microorganisms. Bacteria of the coliform group are considered the primary indicators of fecal contamination and are often used to assess water quality.

Bacterial source tracking (BST). A collection of scientific methods used to track sources of fecal contamination.

Best management practices (BMPs). Methods, measures, or practices determined to be reasonable and cost-effective means for a landowner to meet certain, generally nonpoint source, pollution control needs. BMPs include structural and nonstructural controls and operation and maintenance procedures.

Biosolids. Biologically treated solids originating from municipal wastewater treatment plants.
Clean Water Act (CWA). The Clean Water Act (formerly referred to as the Federal Water Pollution Control Act or Federal Water Pollution Control Act Amendments of 1972), Public Law 92-500, as amended by Public Law 96-483 and Public Law 97-117, 33 U.S.C. 1251 et seq. The Clean Water Act (CWA) contains a number of provisions to restore and maintain the quality of the nation's water resources. One of these provisions is section 303(d), which establishes the TMDL program.

Concentration. Amount of a substance or material in a given unit volume of solution; usually measured in milligrams per liter (mg/L) or parts per million (ppm).

Concentration-based limit. A limit based on the relative strength of a pollutant in a waste stream, usually expressed in milligrams per liter (mg/L).

Confluence. The point at which a river and its tributary flow together.

Contamination. The act of polluting or making impure; any indication of chemical, sediment, or biological impurities.

Cost-share program. A program that allocates project funds to pay a percentage of the cost of constructing or implementing a best management practice. The remainder of the costs is paid by the producer(s).

Critical condition. The critical condition can be thought of as the "worst case" scenario of environmental conditions in the waterbody in which the loading expressed in the TMDL for the pollutant of concern will continue to meet water quality standards. Critical conditions are the combination of environmental factors (e.g., flow, temperature, etc.) that results in attaining and maintaining the water quality criterion and has an acceptably low frequency of occurrence.

Designated uses. Those uses specified in water quality standards for each waterbody or segment whether or not they are being attained.

Dilution. The addition of some quantity of less-concentrated liquid (water) that results in a decrease in the original concentration.

Direct runoff. Water that flows over the ground surface or through the ground directly into streams, rivers, and lakes.

Discharge. Flow of surface water in a stream or canal, or the outflow of groundwater from a flowing artesian well, ditch, or spring. Can also apply to discharge of liquid effluent from a facility or to chemical emissions into the air through designated venting mechanisms.

Discharge permits (under NPDES). A permit issued by the U.S. EPA or a state regulatory agency that sets specific limits on the type and amount of pollutants that a municipality or industry can discharge to a receiving water; it also includes a compliance schedule for achieving those limits. The permit process was established
under the National Pollutant Discharge Elimination System, under provisions of the Federal Clean Water Act.

DNA. Deoxyribonucleic acid. The genetic material of cells and some viruses.

Domestic wastewater. Also called sanitary wastewater, consists of wastewater discharged from residences and from commercial, institutional, and similar facilities.

Drainage basin. A part of a land area enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into a receiving water. Also referred to as a watershed, river basin, or hydrologic unit.

Effluent. Municipal sewage or industrial liquid waste (untreated, partially treated, or completely treated) that flows out of a treatment plant, septic system, pipe, etc.

Effluent limitation. Restrictions established by a state or EPA on quantities, rates, and concentrations in pollutant discharges.

Endpoint. An endpoint (or indicator/target) is a characteristic of an ecosystem that may be affected by exposure to a stressor. Assessment endpoints and measurement endpoints are two distinct types of endpoints commonly used by resource managers. An assessment endpoint is the formal expression of a valued environmental characteristic and should have societal relevance (an indicator). A measurement endpoint is the expression of an observed or measured response to a stress or disturbance. It is a measurable environmental characteristic that is related to the valued environmental characteristic chosen as the assessment endpoint. The numeric criteria that are part of traditional water quality standards are good examples of measurement endpoints (targets).

Existing use. Use actually attained in the waterbody on or after November 28, 1975, whether or not it is included in the water quality standards (40 CFR 131.3).

Fecal Coliform. Indicator organisms (organisms indicating presence of pathogens) associated with the digestive tract.

Feedlot. A confined area for the controlled feeding of animals. Tends to concentrate large amounts of animal waste that cannot be absorbed by the soil and, hence, may be carried to nearby streams or lakes by rainfall runoff.

Geometric mean. A measure of the central tendency of a data set that minimizes the effects of extreme values.

GIS. Geographic Information System. A system of hardware, software, data, people, organizations and institutional arrangements for collecting, storing, analyzing and disseminating information about areas of the earth. (Dueker and Kjerne, 1989)
Ground water. The supply of fresh water found beneath the earth's surface, usually in aquifers, which supply wells and springs. Because ground water is a major source of drinking water, there is growing concern over contamination from leaching agricultural or industrial pollutants and leaking underground storage tanks.

Hydrograph. A graph showing variation of stage (depth) or discharge in a stream over a period of time.

Hydrologic cycle. The circuit of water movement from the atmosphere to the earth and its return to the atmosphere through various stages or processes, such as precipitation, interception, runoff, infiltration, storage, evaporation, and transpiration.

Hydrology. The study of the distribution, properties, and effects of water on the earth's surface, in the soil and underlying rocks, and in the atmosphere.

Indicator. A measurable quantity that can be used to evaluate the relationship between pollutant sources and their impact on water quality.

Indicator organism. An organism used to indicate the potential presence of other (usually pathogenic) organisms. Indicator organisms are usually associated with the other organisms, but are usually more easily sampled and measured.

In situ. In place; in situ measurements consist of measurements of components or processes in a full-scale system or a field, rather than in a laboratory.

Isolate. An inbreeding biological population that is isolated from similar populations by physical or other means.

Limits (upper and lower). The lower limit equals the lower quartile – 1.5x(upper quartile – lower quartile), and the upper limit equals the upper quartile + 1.5x(upper quartile – lower quartile). Values outside these limits are referred to as outliers.

Loading, Load, Loading rate. The total amount of material (pollutants) entering the system from one or multiple sources; measured as a rate in weight per unit time.

Load allocation (LA). The portion of a receiving waters loading capacity attributed either to one of its existing or future nonpoint sources of pollution or to natural background sources. Load allocations are best estimates of the loading, which can range from reasonably accurate estimates to gross allotments, depending on the availability of data and appropriate techniques for predicting the loading. Wherever possible, natural and nonpoint source loads should be distinguished (40 CFR 130.2(g)).

Loading capacity (LC). The greatest amount of loading a water can receive without violating water quality standards.

Margin of safety (MOS). A required component of the TMDL that accounts for the uncertainty about the relationship between the pollutant loads and the quality of the
receiving waterbody (CWA section 303(d)(1)(C)). The MOS is normally incorporated into the conservative assumptions used to develop TMDLs (generally within the calculations or models) and approved by EPA either individually or in state/EPA agreements. If the MOS needs to be larger than that which is allowed through the conservative assumptions, additional MOS can be added as a separate component of the TMDL (in this case, quantitatively, a TMDL = LC = WLA + LA + MOS).

Mathematical model. A system of mathematical expressions that describe the spatial and temporal distribution of water quality constituents resulting from fluid transport and the one or more individual processes and interactions within some prototype aquatic ecosystem. A mathematical water quality model is used as the basis for waste load allocation evaluations.

Mean. The sum of the values in a data set divided by the number of values in the data set.

MGD. Million gallons per day. A unit of water flow, whether discharge or withdraw.

Monitoring. Periodic or continuous surveillance or testing to determine the level of compliance with statutory requirements and/or pollutant levels in various media or in humans, plants, and animals.

Narrative criteria. Nonquantitative guidelines that describe the desired water quality goals.

National Pollutant Discharge Elimination System (NPDES). The national program for issuing, modifying, revoking and re-issuing, terminating, monitoring, and enforcing permits, and imposing and enforcing pretreatment requirements, under sections 307, 402, 318, and 405 of the Clean Water Act.

Natural waters. Flowing water within a physical system that has developed without human intervention, in which natural processes continue to take place.

Non-point source. Pollution that originates from multiple sources over a relatively large area. Nonpoint sources can be divided into source activities related to either land or water use including failing septic tanks, improper animal-keeping practices, forest practices, and urban and rural runoff.

Numeric targets. A measurable value determined for the pollutant of concern, which, if achieved, is expected to result in the attainment of water quality standards in the listed waterbody.

Organic matter. The organic fraction that includes plant and animal residue at various stages of decomposition, cells and tissues of soil organisms, and substances synthesized by the soil population. Commonly determined as the amount of organic material contained in a soil or water sample.

Peak runoff. The highest value of the stage or discharge attained by a flood or storm event; also referred to as flood peak or peak discharge.
Permit. An authorization, license, or equivalent control document issued by EPA or an approved federal, state, or local agency to implement the requirements of an environmental regulation; e.g., a permit to operate a wastewater treatment plant or to operate a facility that may generate harmful emissions.

Phased approach. Under the phased approach to TMDL development, load allocations and wasteload allocations are calculated using the best available data and information recognizing the need for additional monitoring data to accurately characterize sources and loadings. The phased approach is typically employed when nonpoint sources dominate. It provides for the implementation of load reduction strategies while collecting additional data.

Point source. Pollutant loads discharged at a specific location from pipes, outfalls, and conveyance channels from either municipal wastewater treatment plants or industrial waste treatment facilities. Point sources can also include pollutant loads contributed by tributaries to the main receiving water stream or river.

Pollutant. Dredged spoil, solid waste, incinerator residue, sewage, garbage, sewage sludge, munitions, chemical wastes, biological materials, radioactive materials, heat, wrecked or discarded equipment, rock, sand, cellar dirt, and industrial, municipal, and agricultural waste discharged into water. (CWA section 502(6)).

Pollution. Generally, the presence of matter or energy whose nature, location, or quantity produces undesired environmental effects. Under the Clean Water Act, for example, the term is defined as the man-made or man-induced alteration of the physical, biological, chemical, and radiological integrity of water.

Privately owned treatment works. Any device or system that is (a) used to treat wastes from any facility whose operator is not the operator of the treatment works and (b) not a publicly owned treatment works.

Public comment period. The time allowed for the public to express its views and concerns regarding action by EPA or states (e.g., a Federal Register notice of a proposed rule-making, a public notice of a draft permit, or a Notice of Intent to Deny).

Publicly owned treatment works (POTW). Any device or system used in the treatment (including recycling and reclamation) of municipal sewage or industrial wastes of a liquid nature that is owned by a state or municipality. This definition includes sewers, pipes, or other conveyances only if they convey wastewater to a POTW providing treatment.

Raw sewage. Untreated municipal sewage.

Receiving waters. Creeks, streams, rivers, lakes, estuaries, ground-water formations, or other bodies of water into which surface water and/or treated or untreated waste are discharged, either naturally or in man-made systems.
Restoration. Return of an ecosystem to a close approximation of its presumed condition prior to disturbance.

Riparian areas. Areas bordering streams, lakes, rivers, and other watercourses. These areas have high water tables and support plants that require saturated soils during all or part of the year. Riparian areas include both wetland and upland zones.

Riparian zone. The border or banks of a stream. Although this term is sometimes used interchangeably with floodplain, the riparian zone is generally regarded as relatively narrow compared to a floodplain. The duration of flooding is generally much shorter, and the timing less predictable, in a riparian zone than in a river floodplain.

Runoff. That part of precipitation, snowmelt, or irrigation water that runs off the land into streams or other surface water. It can carry pollutants from the air and land into receiving waters.

Septic system. An on-site system designed to treat and dispose of domestic sewage. A typical septic system consists of a tank that receives waste from a residence or business and a drain field or subsurface absorption system consisting of a series of percolation lines for the disposal of the liquid effluent. Solids (sludge) that remain after decomposition by bacteria in the tank must be pumped out periodically.

Sewer. A channel or conduit that carries wastewater and storm water runoff from the source to a treatment plant or receiving stream. Sanitary sewers carry household, industrial, and commercial waste. Storm sewers carry runoff from rain or snow. Combined sewers handle both.

Slope. The degree of inclination to the horizontal. Usually expressed as a ratio, such as 1:25 or 1 on 25, indicating one unit vertical rise in 25 units of horizontal distance, or in a decimal fraction (0.04), degrees (2 degrees 18 minutes), or percent (4 percent).

Stakeholder. Any person with a vested interest in the TMDL development.

Standard. In reference to water quality (e.g. 200 cfu/100 ml geometric mean limit).

Storm runoff. Storm water runoff, snowmelt runoff, and surface runoff and drainage; rainfall that does not evaporate or infiltrate the ground because of impervious land surfaces or a soil infiltration rate lower than rainfall intensity, but instead flows onto adjacent land or into waterbodies or is routed into a drain or sewer system.

Streamflow. Discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" since streamflow may be applied to discharge whether or not it is affected by diversion or regulation.
Stream restoration. Various techniques used to replicate the hydrological, morphological, and ecological features that have been lost in a stream because of urbanization, farming, or other disturbance.

Surface area. The area of the surface of a waterbody; best measured by planimetry or the use of a geographic information system.

Surface runoff. Precipitation, snowmelt, or irrigation water in excess of what can infiltrate the soil surface and be stored in small surface depressions; a major transporter of nonpoint source pollutants.

Surface water. All water naturally open to the atmosphere (rivers, lakes, reservoirs, ponds, streams, impoundments, seas, estuaries, etc.) and all springs, wells, or other collectors directly influenced by surface water.

Topography. The physical features of a geographic surface area including relative elevations and the positions of natural and man-made features.

Total Maximum Daily Load (TMDL). The sum of the individual wasteload allocations (WLAs) for point sources, load allocations (LAs) for nonpoint sources and natural background, plus a margin of safety (MOS). TMDLs can be expressed in terms of mass per time, toxicity, or other appropriate measures that relate to a state's water quality standard.

Transport of pollutants (in water). Transport of pollutants in water involves two main processes: (1) advection, resulting from the flow of water, and (2) dispersion, or transport due to turbulence in the water.

Tributary. A lower order-stream compared to a receiving waterbody. "Tributary to" indicates the largest stream into which the reported stream or tributary flows.

Variance. A measure of the variability of a data set. The sum of the squared deviations (observation – mean) divided by (number of observations) – 1.

DACS. Department of Agriculture and Consumer Services.

DCR. Department of Conservation and Recreation.

DEQ. Virginia Department of Environmental Quality.

VDH. Virginia Department of Health.

Wasteload allocation (WLA). The portion of a receiving waters' loading capacity that is allocated to one of its existing or future point sources of pollution. WLAs constitute a type of water quality-based effluent limitation (40 CFR 130.2(h)).
Wastewater. Usually refers to effluent from a sewage treatment plant. See also *Domestic wastewater.*

Wastewater treatment. Chemical, biological, and mechanical procedures applied to an industrial or municipal discharge or to any other sources of contaminated water to remove, reduce, or neutralize contaminants.

Water quality. The biological, chemical, and physical conditions of a waterbody. It is a measure of a waterbody's ability to support beneficial uses.

Water quality criteria. Levels of water quality expected to render a body of water suitable for its designated use, composed of numeric and narrative criteria. Numeric criteria are scientifically derived ambient concentrations developed by EPA or states for various pollutants of concern to protect human health and aquatic life. Narrative criteria are statements that describe the desired water quality goal. Criteria are based on specific levels of pollutants that would make the water harmful if used for drinking, swimming, farming, fish production, or industrial processes.

Water quality standard. Law or regulation that consists of the beneficial designated use or uses of a waterbody, the numeric and narrative water quality criteria that are necessary to protect the use or uses of that particular waterbody, and an antidegradation statement.

Watershed. A drainage area or basin in which all land and water areas drain or flow toward a central collector such as a stream, river, or lake at a lower elevation.

WQIA. Water Quality Improvement Act.
Appendix B

Antibiotic Resistance Analysis
(MapTech)
When performing ARA, isolates (colonies picked from membrane filtration plates) of *E. coli* or *Enterococcus* are transferred to a 96-well tissue culture plate (one isolate per well) containing a selective liquid medium. The 96-well plates are incubated and confirmed as *E. coli* or *Enterococcus* by color changes in the liquid after incubation (Figure 1). Antibiotic stock solutions are prepared and each of twenty-eight or more antibiotic/concentrations is added separately to flasks of autoclaved and cooled Trypticase Soy Agar (TSA) from the stock solutions to achieve the desired concentration, and then poured into sterile 15x100mm petri dishes.

Figure 1. 96-well plate after incubation.

Control plates (no antibiotics) are included with each set. Isolates are transferred from the 96-well plate using a stainless steel 48-prong replica plater (Sigma). The replicator is flame-sterilized (95% ethanol) after inoculation of each TSA plate. Resistance to an antibiotic is determined by comparing each isolate to the growth of that isolate on the control plate. A one (1) is recorded for growth and a zero (0) is recorded for no growth (Figure 2). This is repeated for each isolate on each of the 30 antibiotic plates to develop a profile.

Figure 2. TSA control plate (with no antibiotics) showing growth of all 48 isolates.

The profile is then compared against the known source library to determine the source of the isolate (see data analysis section). The basic process is the same for all approaches, that is, a database of known sources analyzed using the BST method of choice must be developed and samples of unknown bacterial origin are collected, analyzed and compared to the known source database. For studies, such as Total Maximum Daily Loads (TMDL), we recommend the ARA procedure due to typical cost constraints. Typically we analyze 24 isolates per unknown source (e.g. stream or well water) sample. This provides measurements of the proportion of a given source that are in increments of approximately 4%. If more precision is required, 48 isolates can be analyzed, resulting in resolution of approximately 2%. If the sampling is to be done in a geographical area where a database of known sources has not been developed, we will need to collect samples from known sources (i.e. human, livestock, wildlife) and compare them to our existing databases to determine if one of our existing databases is compatible with the study area. Twenty-four isolates from each of these samples will be analyzed. If no existing database is compatible, we will need to develop a database for the study area. The number of samples needed depend on variability of source samples. We have had a good deal of success in the past by using existing databases through obtaining known source samples from each group (i.e. human, livestock, wildlife) in the study area and comparing them to existing databases.
Appendix C

Calculations
Calculations

Allowable Load Calculation from Section 6.14.

TMDL cfu/day = Avg daily Q ft³/s * 7.48 gal/ft³ * 3.785 l/gal * 1000 ml/l * 235 cfu/100 ml * 60 s/min * 60 min/day * 24 hrs/day
Or TMDL cfu/day = Avg daily Q ft³/s * 2.098176173 x 10¹²

Where:

TMDL cfu/day = Allowable load in cfu/day
235 cfu/100 ml = Instantaneous E. coli standard
Average daily Q ft³/s = Average daily flow in cubic feet per second
cfu = E. coli colony forming units.
I = liters
ml = milliliters
s = seconds
min = minutes
yr = year
gal = gallons

Required Reduction Calculation from Section 7

TMDL cfu/day = LA cfu/day + WLA cfu/day + MOS (cfu/day)
OL = LA cfu/day + WLA cfu/day
% reduction = [(OL - TMDL)/OL] * 100

Where:

TMDL = total maximum daily load (@ 99th percentile)
LA = load allocation
WLA = waste load allocation
MOS = margin of safety
OL = observed load (@ 99th percentile)
Appendix D

Reference Stream Selection
Once several possible reference watersheds are selected, a correlation analysis is performed on the flow measurements of the reference and target gauges. Usually the reference gauge with the strongest correlation to the target gauge is selected; however, the final decision is subject to best professional judgment. In some cases a watershed with a lower correlation may be a better choice.

The reference stream correlation is performed by entering the flow measurement data from the target stream (Occupacia Creek) into an Excel spreadsheet along with daily mean flow data from the reference streams. The Excel “Correlation” data analysis tool is then run to determine "R" or the Pearson's correlation coefficient which can be used as an indication of the strength of the correlation. In this analysis absolute values of the Pearson's coefficient between 0-0.19 were regarded as indicating a very weak correlation, 0.2-0.39 as weak, 0.40-0.59 as moderate, 0.6-0.79 as strong and 0.8-1 as a very strong correlation.

Using the Excel graphing package, the measurement data from Occupacia Creek were plotted against the corresponding daily mean flow data for the Piscataway Creek gage. Excel was then used to draw a best-fit line through the data points and develop the equation for the “regression” line (Figure A). Using the equation for the regression line, daily mean flow values from Piscataway Creek could be plugged into the “x” or independent variable in the equation and the flow at the Occupacia Creek site, the “y” or dependent variable, could be calculated.

The flows at the listing monitoring station on Farmers Hall Creek were determined by drainage area proportion from Occupacia Creek. First, the drainage area at both the measuring site on Occupacia and the monitoring station on Farmers Hall Creek were determined. Then the flows which were calculated for Occupacia, as described above, were proportioned for the smaller Farmers Hall Creek subwatershed.

\[y = 0.9692x^{0.9413} \]
Appendix E

Flow Change and Precipitation Analysis
In order to better target BMPs for the Occupacia Creek watershed, the correlation between water quality violations, stream flow changes and precipitation was investigated. The goal was to determine which violations might be related to runoff and which might be related to direct deposition.

As stated in Section 6.1 on flow data, there was no continuous stream gage in the Occupacia Creek watershed, so there is little historic flow data. For this reason, the continuous gage at Piscataway Creek near Tappahannock, VA (station 01669000) was used to develop the flow duration curve for Occupacia Creek. When assessing the correlation between flow change and violations, flow changes at the Piscataway Creek gage were examined. The theory is that flow changes at the Piscataway Creek gage, located approximately 13 miles southeast of the Occupacia Creek site, would reflect flow changes in Occupacia Creek. Changes in flow might, in turn, signify runoff from precipitation events.

To assess the link between flow changes and precipitation events, precipitation records from the Warsaw, VA weather station (COOP ID 448894), located north of the Rappahannock River in Richmond County, were examined. Daily precipitation records were provided by the State Climate Office of North Carolina (http://www.nc-climate.ncsu.edu). Precipitation events on the day before and on the day of each violation were examined. Precipitation events on the day before the violation were examined to see if decreasing flows on violation days were the result of a precipitation event within the preceding 24 hours.

Results of the study are presented graphically and in tabular format below.

Precipitation and Flow Annotated Violations (Occupacia Creek Watershed)

![Graph Image]
Precipitation and Flow Annotated Violations (Farmers Hall Creek subwatershed)

Water Quality Standard Violations, Stream Flow Change, and Precipitation in Occupacia Creek

<table>
<thead>
<tr>
<th>Sampling Date</th>
<th>Fecal Coliform Analytical Result (cfu/100 mL)</th>
<th>Translated E. coli Value (cfu/100 mL)</th>
<th>Target Stream Flow (cfs)</th>
<th>Duration Interval (%)</th>
<th>E. coli Load (cfu/day)</th>
<th>Increasing Flow?</th>
<th>Same Day Precipitation (in)</th>
<th>Prior Day Precipitation (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/12/95</td>
<td>1300</td>
<td>719</td>
<td>5.40</td>
<td>88</td>
<td>3.47E+13</td>
<td>No</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8/13/97</td>
<td>5400</td>
<td>2661</td>
<td>4.24</td>
<td>91</td>
<td>1.01E+14</td>
<td>No</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6/11/98</td>
<td>1800</td>
<td>970</td>
<td>37.79</td>
<td>18</td>
<td>3.27E+14</td>
<td>Yes</td>
<td>0.62</td>
<td>0.93</td>
</tr>
<tr>
<td>6/14/99</td>
<td>5400</td>
<td>2661</td>
<td>0.96</td>
<td>99</td>
<td>2.28E+13</td>
<td>Yes</td>
<td>0.63</td>
<td>0.25</td>
</tr>
<tr>
<td>9/17/03</td>
<td>320</td>
<td>34.15</td>
<td>22</td>
<td>9.76E+13</td>
<td>No</td>
<td>0</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>5/24/04</td>
<td>410</td>
<td>21.57</td>
<td>44</td>
<td>7.90E+13</td>
<td>No</td>
<td>0</td>
<td>0</td>
<td>0.05</td>
</tr>
<tr>
<td>7/21/04</td>
<td>320</td>
<td>26.79</td>
<td>33</td>
<td>7.66E+13</td>
<td>No</td>
<td>0</td>
<td>0</td>
<td>0.26</td>
</tr>
<tr>
<td>8/29/05</td>
<td>300</td>
<td>5.15</td>
<td>88</td>
<td>1.38E+13</td>
<td>Yes</td>
<td>0</td>
<td>0</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Positive flow change with same day or prior day precipitation event
Negative or stable flow change with prior day precipitation event

The results of the study suggest that as many as 5 of the 8 violations (62%) could be related to runoff events.
Additional information regarding the nature of the violation can be gleaned from looking at the flow conditions under which the violations occur. Four of the violations including the two violations requiring the highest load reduction occur during low flow conditions.

Water Quality Standard Violations, Stream Flow Change, and Precipitation in Farmers Hall Creek

<table>
<thead>
<tr>
<th>Sampling Date</th>
<th>Fecal Coliform Analytical Result (cfu/100 mL)</th>
<th>Translated E. coli Value (cfu/100 mL)</th>
<th>Target Stream Flow (cfs)</th>
<th>Duration Interval (%)</th>
<th>E. coli Load (cfu/day)</th>
<th>Increasing Flow?</th>
<th>Same Day Precipitation (in)</th>
<th>Prior Day Precipitation (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/1/01</td>
<td>1300</td>
<td>719</td>
<td>0.76</td>
<td>85.2</td>
<td>1.34E+10</td>
<td>Yes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12/1/01</td>
<td>2900</td>
<td>1503</td>
<td>1.21</td>
<td>74.0</td>
<td>4.47E+10</td>
<td>Yes</td>
<td>1.02</td>
<td>0</td>
</tr>
</tbody>
</table>

Positive flow change with same day or prior day precipitation event

Negative or stable flow change with prior day precipitation event

The results of the study suggest that both violations in Farmers Hall Creek could be related to runoff events.