Several potentially harmful/toxic species were observed:
- **Cochlodinium polykrikoides**
- **Scrippsiella trochoidea**
- **Heterosigma akashiwo**
- **Chattonella subsalsa**
- **Prorocentrum micans**
- **Alexandrium monilatum**
- **Karlodinium veneficum**
- **Alexandrium species**?

Also saw blooms of:
- **Heterocapsa triquetra**
- **Akashiwo sanguinea**
- **Gyrodinium insinuatum**

Example Results of Microscopic and Molecular Analyses

- 7/2/2012, E612, HRSD-Lafayette River, Chla = 185 ug/L, POM, ciliates, zooplankton, diatoms, **Cochlodinium polykrikoides** (22,359 cells/ml), **Scrippsiella trochoidea** (low), **Karlodinium veneficum** (low), **Gyrodinium and Gymnodinium spp.**

- 7/18/2012, Poly3 212HRSD-bloom, James River Chla = 121.6 ug/L, POM, ciliates, diatoms, zooplankton, **Cochlodinium polykrikoides** (38,951 cells/ml), **Scrippsiella trochoidea** (low), **Gyrodinium and Gymnodinium spp.**

Cochlodinium polykrikoides Blooms in VA Waters-2012

Blooms of **Cochlodinium polykrikoides** were particularly heavy and widespread through early July--August. Very heavy blooms this year starting in early July. Blooms were still observed in the James River as late as Sept. 12-18.

Hampton Roads and James River Blooms-2012

- 7/2/2012, E612, Lafayette River, Chla = 185 ug/L, POM, ciliates, zooplankton, diatoms, **Cochlodinium polykrikoides** (22,359 cells/ml), **Scrippsiella trochoidea** (low), **Karlodinium veneficum** (low), **Gyrodinium and Gymnodinium spp.**

- 7/18/2012, Poly3 212HRSD-bloom, James River Chla = 121.6 ug/L, POM, ciliates, diatoms, zooplankton, **Cochlodinium polykrikoides** (38,951 cells/ml), **Scrippsiella trochoidea** (low), **Gyrodinium and Gymnodinium spp.**

Subtask 1.2 – CHLa, diagnostic pigments and the occurrence of harmful algae as determined through microscopic and molecular genetic analyses

- 136 water samples for JR study, >600 samples overall
- Samples from Moore Lab:
 - Dataflow (oligo)-94
 - ConMon (meso)-19
 - Bloom-1
- Additional samples:
 - HRSD (for Bioassays Subtask 2.1)-16 total samples (several lysed)*
 - Replicates of routine and bloom samples sent to VIMS and ODU
 - DEQ samples from Hampton Roads area
 - 136 water samples for JR study, >600 samples overall

July 31, 2012
2012 *Cochlodinium polykrikoides* blooms

Very heavy blooms of long duration and very extensive.
July 3, 2012: 20,000 cells/ml in the Elizabeth River
July 18, 2012: 30,000 cells/ml in the James River
Aug. 8, 2012: 22,500 cells/ml in Sarah’s Creek
Aug. 13, 2012: 28,000 cells/ml in the Rappahannock River
Aug. 31, 2012: 4,000 cells/ml in the Coan River
Sept. 13, 2012: 13,000 cells/ml in the James River at VIMS ConMon station

Cochlodinium blooms observed also in the Eastern Shore bayside mouth of Nassawadox Creek, Cherrystone Inlet

Subtask 2.1 — Determine linkages between blooms and biological impairments

- Oyster were deployed as sentinels at the JR ConMon site
 - Baseline sample was collected after 2 weeks-no mortality and general health determined to be good
 - Bloom exposed samples collected after 5-7 days exposure as determined by ConMon data- mortality and histopathology
- Larval Bioassays on bloom samples and JR cultures established during the study
 - *Artemia salina*-bloom and culture samples
 - *Crassostrea virginica* (when veligers are available)—spawning is essentially complete for this season. Spring-culture assays can be done.
 - *Cyprinodon variegatus* (for culture assays during the fall/winter)

Preliminary Histopathology Results of Oysters Deployed at VIMS James River ConMon

- Between July 22 and Aug. 10 there were several spikes in chlorophyll levels observed (>30 µg/L).
- Oysters collected from the cage on July 25, 2012 exhibited increased hemocytosis, and some gill erosion compared to the baseline samples.
- In a sample of oysters collected from the cage on Aug. 8, 2012 there were two cases of minor gut epithelial disruption, with some metaplasia observed in one of those cases, and there were two cases of increased hemocytosis at the gills.

Bloom Sample Bioassay

- *A. salina / L. polykrikoides* bioassay
- Chlorophyll = 115 µg/L
- Visual = 4,400 cells/mL
- Molecular = 5,300 cells/mL

Bloom Sample Bioassay

- *A. salina / L. polykrikoides* bioassay
- Chlorophyll = 186 µg/L
- Visual = 15,750 cells/mL
- Molecular = 17,000 cells/mL
Bloom Sample Bioassay

Chlorophyll = 141 ug/L
Visual = 3,950 cells/ml
Molecular = 5,900 cells/ml

Bloom Sample Bioassay

Chlorophyll = 422 ug/L
Visual = 27,500 cells/ml
Molecular = 15,800 cells/ml (Note - DNA extraction column overloaded)

Bloom Sample Bioassay

Chlorophyll = 635 ug/L
Visual = NA
Molecular = NA

Bloom Sample Bioassay

Chlorophyll = 154 ug/L
Visual = 2,400 cells/ml
Molecular = NA cells/ml

Issues

- Sample pick-ups from HRSD: almost all bloom samples to date have been from Lafayette, Elizabeths and the polyhaline and mesohaline regions of the James. This required numerous trips to the south side that often take ~ 2-4 hrs round trip.

- Samples with very high cell concentrations lysed (or encysted) before they arrive at VIMS.
- Too cold and the cells encyst
- Too hot and the cells lyse

Recommendation

- Alternative transfer protocol: live samples to be stored and transported in a cooler with blue ice, but NOT in direct contact with the ice. Insulated from the cold packs with bubble wrap or styrofoam.
- Additional funding for travel for sample transport

Alexandrium monilatum Blooms in VA Waters
Emerging species for Hampton Roads/James River?

- 2007 - 2012 a “new” bloom organism was identified as Alexandrium monilatum blooming in the York River near VIMS.
- This is a common bloom species along the southern Atlantic and Gulf coasts of the USA.
- The range is now expanded to Chesapeake Bay
- The cells are now seen in water samples regularly during Aug/Sept and blooms have been observed most years.

Very heavy blooms this year!!! >500,000 cells/ml in York/Sarah’s Creek.
Up to 600 cells/ml in Hampton Roads to VA Beach and the James River.
Alexandrium monilatum expanding range from the York River?

Numerous reports of small fish kills and bioluminescence in the region during the time that bloom patches were observed.

- Sept. 11-14: Fish kills and bioluminescence reported at York Point, in the Lynnhaven Inlet and at Ocean View.
- Sample collected from Ocean View on Sept. 14: ~400 cells/ml of *A. monilatum*.
- Very heavy *A. monilatum* bloom in the York River south of the Coleman Bridge: 1,000-20,000 cells/ml.
- ODU reported several samples with 100’s cells/ml of *A. monilatum* and possibly other *Alexandrium* species.

Jerry Held (menhaden spottar)

Sept. 14, 2012 southwest of Cape Charles

Bloom sample (E5812) with long chains of *A. monilatum* (clonal/asexual reproduction)

>500,000 cells/ml by molecular assay

Jerry Held (menhaden spottar)

Sept. 14, 2012 southwest of Cape Charles

Bloom sample of *A. monilatum* (E6012) primarily planozygotes (sexual reproduction)

~8,000 cells/ml

- Sept. 11-14: Fish kills and bioluminescence reported at York Point, in the Lynnhaven Inlet and at Ocean View.
- Sample collected from Ocean View on Sept. 14: ~400 cells/ml of *A. monilatum*.
- Very heavy *A. monilatum* bloom in the York River south of the Coleman Bridge: 1,000-20,000 cells/ml.
- ODU reported several samples with 100’s cells/ml of *A. monilatum* and possibly other *Alexandrium* species.

Bloom sample (E5812) with long chains of *A. monilatum* (clonal/asexual reproduction)

>500,000 cells/ml by molecular assay

Jerry Held (menhaden spottar)

Sept. 14, 2012 southwest of Cape Charles

Bloom sample of *A. monilatum* (E6012) primarily planozygotes (sexual reproduction)

~8,000 cells/ml

Samples collected from HR, JR and southside Sept. were largely planozygotes and cysts

http://tolweb.org/notes/?note_id=5512

Samples collected from HR, JR and southside Sept. were largely planozygotes and cysts.

Sequencing Results from *Alexandrium* sp. Samples

- PCR amplification with degenerate primers to amplify many different dinoflagellate species including most *Alexandrium* species.
- 32 clones of PCR products were sequenced-all *Alexandrium monilatum*
- Primers have been ordered to specifically target
 - *A. tamarense*
 - *A. fundyense*
 - *A. catenella*
 - *A. taylorii*
 - *A. pseudogonyaulax*
 - *A. minutum*
 - *A. tamutum*
- VIMS and ODU samples with *Alexandrium* spp. will be tested

Future Work

- Additional bioassays on cultures
- JR CocNod/Nod/Nodoviruses
- *Gonyaulax trochoidea*
- *Heterosigma akashiwo*
- *Chattonella subsalsa*
- PCR amplification and sequencing to determine if additional *Alexandrium* species are detected
- Completion of oyster pathology

Recommendations

- Additional oyster deployments southside Hampton Roads and lower James
- Careful monitoring in future years for *Alexandrium* species - other emerging species
- Toxin assays on *Alexandrium*, *Chattonella* and *Heterosigma* samples- ELISA assays and HPLC (saxitoxins, brevetoxins)
Bioluminescence observed in Seaford, VA at York Point. Water samples collected contained almost nothing except *A. monilatum ~1,200 cells/ml*

Notable Events in VA Waters

2012 *A. monilatum* blooms

Sarah's Creek Sept. 5, 2012

- Late August bloom was very heavy on the Yorktown side of the York River near Coleman Bridge.
- After a few days bloom heavy toward Goodwin Island and on north side of York River.
- By Sept. 5 the bloom patches moved into Sarah's Creek.
- By the week of Sept. 10-14 observed in Hampton Roads, VA Beach, James River.

5,400 cells/ml

5,500 cells/ml

Cypinodon variegatus (i.e. larval fish bioassay) with sample 5812: Mortality observed within 3 hrs of exposure

Alexandrium monilatum

- 2007 bloom: 450,000 whelks being held in flow-through tanks receiving unfiltered York River water at VIMS dies within 3 days.
- During the September 2008 bloom, experimental cow nose rays being held in tanks at VIMS with sand-filtered water all died withing two day period. The rays were being fed oysters that were being held in the waters surrounding VIMS during the bloom.
- 2012 bloom: a few small fish kills were observed. Mortality observed in York River and Sarah's Creek seed oysters. VIMS scientists alerted and flow through was shut down.
- Reports of a few human health effects during blooms: skin irritation and rashes. VIMS employees experienced symptoms, particularly while processing samples in 2012. Our laboratory workers report irritation to their mucosal tissues (nose, lips, throat etc.), Much more pronounced symptoms this year with collections of large volumes and concentrated material.
- Toxin analyses done at a NOAA lab in 2007 indicated that the *A. monilatum* toxin was found in the whelks, water and oyster samples.

Cochlodinium polykrikoides bioassays with whole cells and lysed cells

Virginia culture

Florida culture
Brevetoxins - Neurotoxic shellfish poisoning (NSP)
HAB species: Karenia brevis, Phalacroma australis, Syracantha pectoralis

Saxitoxin - Paralytic shellfish poisoning (PSP)
HAB species: Some Alexandrium spp. - more species possibly seen this year, molecular analyses underway

Gonioctadin A - Human and Animal Health effects? - we are doing bioassay studies on animal effects
HAB species: Alexandrium monilatum

Micctoxins - Cyanotoxins - hepatotoxic and neurotoxic
HAB species: cyanobacteria ("blue-green algae") - e.g. Microcystis aeruginosa

Domoc Acid - Amnesic shellfish poisoning (ASP)
HAB species: Pseudonitzschia spp. (diatoms)

Okadaic Acid - Diarrhetic DSP shellfish poisoning or Venerupin shellfish poisoning (VSP)
HAB species: Dinophysis spp. and Prorocentrum spp.

Ciguatera - Ciguatera fish poisoning (CFP)
HAB species: Gambierdiscus toxicus

HAB Toxins - ELISA kits and HPLC analysis