Blooms in the Lower James River )
— ' Lower James River

‘ . Over the last 20 years, bloom forming

artment of Ocean, Earth &

T e dinoflagellates have become increasingly
abundant in the tidal rivers of lower Chesapeake
Bay.?

Linked with eutrophication and anthropogenic

Old Dominion University.

perturbations
Specific species occur with regular seasonality

Nutrients and physical parameters vary on
timescales ranging from minutes to years.
Targeted bloom sampling only occurs after bloom
has already formed, therefore we can only
speculate about cause of bloom

2. Burchardt and Marshall 2004,
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Bloom formation vs. maintenance:
local conditions and transport at tidal The organisms are weird: Mixotrophy
time scales

Cochlodinium and everything else we’ve looked at utilizes a wide variety

of N compounds, thus no single N species can be linked to bloom
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Table 2. Ambient nutrient concentrations and cell abundance over a diel cycle

Chl a varies depending on the time
Of day spanning from April 30-May1‘sf]t£i3£;?er1sgnat)l9 minimum bloom (> 99% of all

Time Temp  NHs NOs™ Urea Chla Cells
°c (uM) (uM) (ngly  (cellsmi?)
1100 19 0.77 088 235 11,880
(011)
1600 0.50 065 0. 0. 238,000
(0.29)
2000 0.62 093 0. 0.14 ! 7,100

4/30/2003 Prorocentrum minimum 23.47 11,880 1200
4/30/2003 Prorocentrum minimum 191.89 238,000 1600
4/30/2003 Prorocentrum minimum 11.51 7,100 2000
4/30/2003 Prorocentrum minimum 4.77 682 2400
5/1/2003 Prorocentrum minimum 24.47 9,240 0400
5/1/2003 Prorocentrum minimum 16.10 5,400 0800

2400 10. 152 0.66 0. 0.24 . 682
(0.35)

400 . 1.07
(0.43)

800 1.05
(0.37)

6/17/2003 Akashiwo sanguinea
6/17/2003 Akashiwo sanguinea
6/19/2003 Akashiwo sanguinea
6/19/2003 Akashiwo sanguinea

N concentrations highly variable on diel timescales

Cell concentrations highly variable on diel timescales
(behavior, advection?)

Lafayette R. daily

Daily variability
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Cochlodinium polykrikoides in
Chesapeake Bay - transport

» Lower York River late 60’s (Mackiernan, MS
thesis, 1968) and 70’s (Zubkoff and Warriner,
1975; Ho and Zubkoff, 1979)

» 1992 York R. bloom entered Chesapeake Bay and
James River (Marshall, 1995)

 Extensive blooms in the James River and lower
Chesapeake Bay in 2007 (Mulholland et al 2009),
2008 (Morse et al. 2011), and 2009 (Morse et
al.2011)




Impacts
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Fig. 12 Larval fish mortality afler exposure to natural water samples
collected from the lower Chesapeake Bay system containing bloom
concentrations of C. polvkrikoides on 6 Sept 2007

C. polykrikoides exerts negative effects on phytoplankton (Tang
and Gobler (2010), copepods (Jiang et al. 2009), benthic grazers
and fish (Gobler et al. 2008; Mulholland et al. 2009)
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Bloom initiation in the Lafayette River during 2008
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Transport {Sv)

Meteorological forcing

Blooms initiate in Lafayette River

Localized sites of initiation and growth of the mesohaline
portion of the James River in 2008

Bloom initiation coincided with intense, highly localized
rainfall events prior to/during neap tides

Blooms dissipated in response to increased wind-driven
mixing, ~ 30 days after entering James R.

Local conditions in the Bay control amount of transport in
James River, but extent of bloom controlled by circulation
Seasonal rainfall patterns, increased stratification, nutrient
loading, spring-neap tidal modulation, and complex
estuarine mixing and circulation control blooms

Sweet et al. 2009 NOAA Technical Report NOS CO-OPS 051
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Findings
The Lafayette River appears to be the initiation
grounds for blooms
Prolonged drought, N-loading and runoff from
summer storms, and decreased tidal straining during
neap tides leads to bloom formation (stratification +
nutrients = bloom)

Other meteorological and oceanographic forcing as
well!

No single N compound can be implicated in
triggering blooms

James River circulation is important and controls
the distribution and duration of the bloom in the
lower Chesapeake Bay region



Summary

Meteorological forcing — stratification,
mixing and benthic nutrient injection, rain
Transport — initiation or accumulation sites?
Mapping is a good tool

Timescales of variability — monitoring vs.
blooms

Biology and ecology — diverse, chl
relationships, nutrients
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Other problems for managing
HABs

» Monitoring programs aren’t sampling HABs

» Monitoring programs are unlikely to sample
HABs and ad hoc sampling is biases

» Spatial and temporal variability of HABs
different from that of monitoring programs

So far

 No good relationship between Chl a and
abundance and harmful effects

 Chla per cell varies with cell size (species)

» Many species are known mixotrophs. Does
Chl a per cell vary with respect to C nutrition?
(preliminary experiments for one HAB suggest
the answer is “yes” — Hu et al. in review)

HAB species

* Vary taxonomically

Vary in chl a content

* Shifts

— By season (T)

— By locale (S%0)

— By species

Sampling design for monitoring programs —
detection is statistically improbable
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