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predict first floor height for two case study communities, the City of Chesapeake and City of 
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flooding scenarios.  
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Executive Summary  
 

The first finished floor elevation (FFE) of a building provides critical information for 

understanding structural vulnerability to flood hazards and associated damage costs. In the Hampton 

Roads region of Virginia, FFEs have been identified as a major data gap. Although some localities have 

survey information or other data, the primary source of FFE information is FEMA National Flood 

Insurance Program elevation certificates. Less than 1% of structures within Hampton Roads have 

elevation certificates, and these certificates are typically only available as digital PDFs or paper copies by 

locality. To improve access to this information, the first objective of this project was to build a regional 

spatial database containing information from elevation certificates. The second objective was to use 

information from the elevation certificate database to develop a predictive statistical modeling 

approach for estimating FFEs, and then apply the resulting model to estimate FFEs for structures that do 

not have elevation certificates. The report also briefly reviews various approaches for estimating FFE 

and recommends practices for data management.  

Elevation Certificate Data Collection, Assessment, and Processing 

Elevation certificates were collected from ten Hampton Roads localities as digital pdfs. The 

property address, effective Flood Insurance Rate Map information, and building elevation values were 

recorded from the elevation certificates. A FFE was reported for each building based on the provided 

building diagram. The building’s first floor height (FFH) 1 was also calculated to be consistent with the 

format required for FEMA’s Hazus flood model. The elevation certificate information was then joined 

with parcels and building footprints to provide the data in a spatial GIS format. In total, information was 

recorded from 2,065 elevation certificates. This information is publicly available for download through 

the regional open data portal, HRGEO (www.HRGEO.org). 

Analysis of Structure Data to Develop First Floor Elevations 

In order to predict FFE for structures which currently lack elevation certificates, a predictive 

statistical model was developed for two test communities, Chesapeake and Hampton. These cities were 

selected because they had the largest number of elevation certificates available (over 500 for each city). 

The modeling approach, known as Random Forest, uses building attributes to predict FFH for residential 

structures. The resulting FFH value is then added to an estimate of the structure’s lowest adjacent grade 

                                                           
1 FFH is defined as the difference between a structure’s FFE and lowest adjacent grade.  
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to obtain a final estimated FFE. The following variables were included in the model: foundation type, the 

year the structure was built, the current flood zone, the difference in grade (highest adjacent grade – 

lowest adjacent grade), and an estimate of the land elevation where the structure was located.  

  Foundation type was the most important variable for predicting FFH in both models. Year built 

was more important in the Hampton model than in the Chesapeake model, most likely because 

Hampton had a larger sample of elevation certificates for structures built prior to the first effective 

Flood Insurance Rate Map study. Both models showed an improvement in performance for estimating 

FFH relative to default values assigned using FEMA’s Hazus reference tables.  

Conclusions and Next Steps 

 While elevation certificates are the primary source of first floor elevation information, this 

method of data collection can be costly in terms of both time and money. Assessments of alternative 

approaches to estimating FFE are needed to determine if more efficient data creation options are 

reasonably accurate and viable. The statistical modeling approach implemented in this project seems 

feasible and warrants additional research and testing. Foundation type was the most important variable 

for predicting FFE. Providing more detailed and standard foundation type information across locality 

assessor databases would further support FFE estimation approaches. This report marks the conclusion 

of the first phase of the regional FFE project. During the second phase, the elevation certificate database 

and modeling approach will continue to be expanded and refined. FFE estimates will also be applied to 

begin exploring structural vulnerability to coastal flood hazard



 

1 
 

I. Introduction 
 

The Hampton Roads region of southeastern Virginia is surrounded by water and experiences 

recurrent flooding driven by high tides, storm surge, and precipitation events (Mitchell et al., 2013). 

With water levels in Hampton Roads rising more than one foot over the past 80 years, sea level rise and 

land subsidence further exacerbate flooding risk (Mitchell et al., 2013). The seventeen local 

governments of the Hampton Roads Planning District Commission2 (HRPDC) have formally recognized 

through a resolution the need to account for recurrent flooding and sea level rise in planning and 

engineering design (HRPDC, 2018). While studies have been completed for the region to identify areas 

vulnerable to flooding or sea level rise (McFarlane, 2015), key data gaps exist that limit risk assessment 

accuracy.  

A critical data need for assessing structural vulnerability to flooding and estimating associated 

damage is a building’s first finished floor elevation (FFE). Hazus, the Federal Emergency Management 

Agency’s (FEMA) integrated software package for estimating losses from natural hazards, includes a 

specific flood module that requires FFE estimates as an input (in terms of height above grade) (FEMA, 

2017). The Hazus flood model uses building location, FFE, and flooding water level for a given scenario 

to determine the predicted depth of flooding by structure (FEMA, 2017).  By applying this information to 

a depth damage curve, Hazus calculates an estimated loss value based on a percentage of the assessed 

value of the structure (FEMA, 2017). These estimates assist adaptation planning by allowing for 

comparisons of flood mitigation options in terms of losses avoided. The Hazus flood model was applied 

in the 2017 Hampton Roads Hazard Mitigation Plan using default FFE estimates; however, it is noted in 

the plan that the results may not accurately reflect the risk and exact FFE information would improve 

the flood damage vulnerability analysis (HRHMP, 2017).   

The traditional method of collecting FFE data is the completion of an elevation certificate by a 

licensed surveyor. A national standard elevation certificate form is issued by FEMA through the National 

Flood Insurance Program (NFIP) (FEMA, 2015). These certificates provide elevation information that 

supports compliance with community floodplain management ordinances and insurance premium rate 

calculations (FEMA, 2015). Hampton Roads communities have identified the need for elevation 

                                                           
2The Hampton Roads region includes seventeen localities in southeastern Virginia: Chesapeake, Franklin, Gloucester County, 
Hampton, Isle of Wight County, James City County, Newport News, Norfolk, Poquoson, Portsmouth, Southampton County, 
Suffolk, Surry County, Town of Smithfield, Virginia Beach, Williamsburg, and York County. 
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certificates for structures in high risk zones, as well as for older structures that may pre-date the 

community’s first flood insurance rate map (FIRM) and associated flood plain regulations (Stiff and 

Weaver, 2018). However, given that elevation certificates are completed on an individual structure 

basis, collecting FFE information through elevation certificates can be costly in terms of both time and 

money. Identifying methods of collecting FFE information that are more cost and time efficient than 

individual structural surveys are of interest to address the existing FFE data gap.  

 An alternative to elevation certificates for FFE data collection is side-scan mobile LiDAR, which 

uses a laser to generate a 3D point cloud from which FFE can be detected (Ibrahim and Lichti, 2012). 

Beginning in 2009, North Carolina conducted a statewide inventory of building FFEs using a combination 

of side-scan mobile LiDAR and laser inclinometer field data collection (Dorman, 2015). Building FFEs 

were stored in a spatial database as an attribute of building footprints and have been applied to 

improve estimated flood losses (Dorman, 2015). Although the North Carolina inventory approach 

provides accurate FFE measurements, the cost of these approaches can range between $18 -$40 per 

structure, creating challenges for large scale implementation (Koka, 2016).  

In the City of Galveston, Texas, the Galveston Historical Foundation used an approach to 

estimating FFEs that combines Google Earth and Google Street View (Needham and McIntyre, 2018). For 

479 structures in a particular section of the City, the vertical distance from the ground to the first 

habitable floor was measured in computer pixels using Google Street View. The structure’s roof line was 

then measured in computer pixels in Google Street View, as well as in inches in Google Earth, to develop 

a pixel-to-inch conversion ratio. The vertical distance was converted from pixels to inches using the ratio 

to determine building first floor height above grade. Using 22 field observations, the Galveston Historical 

Foundation estimated this combined Google Street View and Google Earth approach produced an 

average estimation error of 0.33 feet. Although this methodology produces reasonably accurate results, 

it can be time consuming at an average estimation rate of 4 hours per city block. (Needham and 

McIntyre, 2018) 

Within Hampton Roads, the U.S. Army Corps of Engineers (USACE) has completed a spatial 

building FFE database for the City of Norfolk and is currently developing a database for the City of 

Portsmouth. For residential structures built prior to the City of Portsmouth’s first FIRM, USACE is using 

Google Street View and vehicle windshield surveys to estimate building FFEs. Using Google Street View 

imagery, USACE is recording the number of stairs leading to the structure’s front door in a geodatabase. 

By assuming that each stair is 0.5ft in height, an estimate of the first finished floor height (FFH) can be 
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calculated and added to the structure’s estimated lowest adjacent grade (LAG). Through vehicle 

windshield surveys, USACE is also recording counts of stairs and building foundation type through ArcGIS 

Collector App, which stores the data with the corresponding building footprint. For structures 

constructed after the City’s first FIRM within the Special Flood Hazard Area (SFHA), USACE is also 

estimating FFE based on the effective floodplain regulations at the time of construction. The estimated 

FFE for a post-FIRM structure would be equivalent to the Base Flood Elevation (BFE) and any additional 

freeboard in order for the structure to be in compliance.  

The Google Street View and floodplain compliance methods were also applied by USACE in the 

City of Norfolk, in combination with information from elevation certificates and individual structural 

surveys where available. Old Dominion University has also obtained FFE estimates through laser 

inclinometer for a neighborhood within the City of Norfolk (Stiff and Weaver, 2018). Old Dominion 

University is also planning to investigate the use of geostatistics and machine learning to predict FFE in 

the City of Newport News in collaboration with the Virginia Department of Emergency Management, 

Virginia Institute of Marine Science, and the Commonwealth Center for Recurrent Flooding Resiliency 

(ODU, VIMS, VDEM, 2017).  

The professional services firm Dewberry developed an FFE database for the City of Virginia 

Beach using predictive statistical modeling (Koka, 2016). Multivariate regression analysis uses 

observational data to produce an equation defining the relationship between predictor variables and a 

response (Hughes, 2012). Over 7,000 FFE data points sourced from city permit data were used to 

develop a regression model that predicts building FFH above grade from several building attributes, 

including year built and foundation type (Koka, 2016). 

 Apart from the completed FFE databases for the cities of Norfolk and Virginia Beach, and the 

work underway in Portsmouth, the only source of FFE information for Hampton Roads localities is 

elevation certificates. These certificates are completed on paper or through an editable PDF. Localities 

that have electronic PDF copies of elevation certificates often store them within individual building 

permit folders. To improve access to this information, the first objective of this project was to build a 

geospatial elevation certificate database with all recorded elevations joined to building footprints or 

parcels. The second objective of this project was to use information from the elevation certificate 

database to evaluate predictive statistical modeling approaches for estimating FFE and apply this model 

to structures which currently lack elevation certificates.  
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This report consists of five main sections. The first is a review of the methods to develop the 

regional elevation certificate database. The second section describes the selected statistical modeling 

approach for estimating FFE and evaluates the results for two test communities. The third section 

identifies the challenges associated with the statistical modeling approach and reviews alternative 

estimation methods. The fourth provides recommendations for management of elevation certificates 

and property attribute data. The final section recommends next steps for expanding the regional FFE 

inventory and applying the data to coastal hazard vulnerability assessments.  
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II. Elevation Certificate Data Collection, Assessment, and Processing 

Elevation Certificate Collection and Review 
To begin building the database, HRPDC staff contacted Hampton Roads localities regarding the 

availability of elevation certificate data. Ten Hampton Roads localities had digital copies of elevation 

certificates available, which were then shared with HRPDC staff. Table 1 summarizes the count of 

finished construction elevation certificates by locality, as well as the number of elevation certificates for 

residential structures.  Approximately 85% of elevation certificates received corresponded with 

residential structures. Remaining elevation certificate building types included accessory structures, 

additions, and non-residential buildings, such as businesses and churches.  

Table 1: Distribution of elevation certificates collected by locality. All elevation certificates are for 
finished construction.   

Locality Total Elevation Certificates 
Residential  Elevation 

Certificates  

Chesapeake 594 557 

Franklin 169  27 

Hampton 651 631 

James City County 177 170 

Newport News     4     3 

Norfolk 69   69 

Portsmouth 75   57 

Southampton County 32   NA 

Virginia Beach 162  160 

York County1 133    88 

TOTAL 2,066 1,762 
1York County inventory is not complete. County staff is continuing to share elevation certificates with HRPDC. 
NA: Information regarding property type has not yet been obtained for Southampton County.  

Each elevation certificate was reviewed and relevant information from the certificates was 

recorded in Excel. A brief summary of the information contained in these sections is provided in Table 2, 

and a complete list of attributes is provided in Appendix A. For older editions of elevation certificates, 

information that applied to the current format was recorded.  
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Table 2: Summary of information recorded from FEMA Elevation Certificate (2015 edition).  

Elevation Certificate Section Attributes Recorded 

A) Property Information Address, Building Use, and Building Diagram  

B) Flood Insurance Rate Map Information 
NFIP Community Number, Effective FIRM Panel 

Date, Flood Zone, and Base Flood Elevation  

C) Building Elevation Information  
Elevation Datum, All structural elevations (a-h), 

including Lowest and Highest Adjacent Grade 

D) Survey, Engineer, or Architect Certification Surveyor signature date 

 

Although elevation certificates do not specifically designate the FFE, the selected building 

diagrams assist in identifying the FFE measurement. For example, elevation certificate Building Diagram 

1A illustrates a slab-on-grade structure, while Building Diagram 8 models a building elevated on a 

crawlspace (Figure 1). Labels C2a and C2b indicate the location of the top of the bottom floor and top of 

the next higher floor respectively. In Diagram 1A, C2a represents the elevation of the first finished floor, 

whereas in Diagram 8, C2a represents the unfinished crawlspace and C2b represents the elevation of 

the FFE. For each of the 9 building diagram types, a general determination of the measurement (C2a or 

C2b) corresponding to the FFE was made. A list of building diagrams with summaries of the first floor 

elevation determination is presented in Appendix B.  

 

 

 

 

 

 

 

 

 

 Figure 1:  FEMA (2015) building diagram for slab-on-grade structure (Diagram 1A) and crawlspace 
structure (Diagram 8).  
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Geodatabase Development  
The recorded elevation certificate information for each locality was transferred to a GIS format. 

Spreadsheets were matched to GIS parcel layers by locality through joining tables or geocoding. The 

information from all elevation certificates, including residential and non-residential certificates, is 

included in a regional parcels geodatabase3  (Figure 2). The parcels information was spatially joined with 

building footprints available through the Virginia Geographic Information Network (VGIN) map service 

(VGIN, 2018). Due to the absence of building footprints in several parcels associated with elevation 

certificates, the building footprint geodatabase contains approximately 94% (1,936) of elevation 

certificates. The final regional geodatabase of elevation certificate information will be available as both a 

parcel layer and building footprint layer on the Hampton Roads regional GIS portal (HRGEO, 2018).  

 

Figure 2: Distribution of elevation certificates across Hampton Roads displayed by building use type.  

Upon request, localities provided additional parcel information from the tax assessment 

database. This included building attributes such as foundation type, year built, number of stories, and 

                                                           
3 A parcel is not available for one elevation certificate located in the City of Franklin; however, a building footprint is available. 
The total number of features in the regional parcels layer is 2,064.  
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assessed value. Based on the building footprint locations, additional fields for the current effective 

highest risk flood zone, along with the associated BFE, were calculated for inclusion in the geodatabase. 

Flood zone designations were assigned by spatially joining building footprints and FEMA's National Flood 

Hazard Layer (FEMA, 2018). If a building footprint intersected multiple flood zones, a unique identifier 

developed to rank flood zones in descending order of risk was used to assign the flood zone of highest 

risk.  

Using the year built feature, an additional attribute was created to distinguish a structure as 

built prior to (Pre) or after (Post) completion of the first FIRM study for each locality. Once the FIRM is 

effective, the NFIP requires the lowest floor elevation of new construction or substantial improvements 

occurring post-FIRM to be at least equal to the BFE of the effective flood zone (FEMA, 2000). Building 

completion years ranged from 1754 to 2018, while elevation certificate completion dates ranged from 

1983 to 2018. Approximately 31% of structures were classified as Pre-FIRM (Figure 3). The City of 

Hampton had the greatest abundance of Pre-FIRM structures (274), followed by the City of Franklin 

(146) (Figure 3).  

 

 

 

 

 

 

 

 

 

 

Figure 3: Distribution of elevation certificates across Hampton Roads displayed as Pre- or Post-FIRM.  
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Approximately 60% (1,240) of elevation certificates collected contained measurements 

completed using the previous vertical datum, National Geodetic Vertical Datum of 1929 (NGVD 1929), 

rather than the current North American Vertical Datum of 1988 (NAVD 88).  To provide a standardized 

measure of FFE across datums, the building’s FFH was calculated as follows:  

First Floor Height (FFH) = First Floor Elevation (FFE) – Lowest Adjacent Grade (LAG) 

This is in agreement with the FEMA Hazus technical manual definition of first floor height as "the 

measurement of floor height from grade to the top of the finished floor." (FEMA, 2017, pg. 3-20).  

A version of the elevation certificate database with all values reported in NAVD 1988 was also 

created. To convert elevations reported in NGVD 1929 to NAVD 1988, a conversion value must be 

obtained for each particular building location. The coordinates of the building footprint centroids (or 

parcel centroid if building footprint was unavailable) were entered into VERTCON v2.1 (NOAA NGS, 

2018). The VERTCON program reports conversion values in meters. The conversion values were then 

converted to feet and applied as follows:  

Elevation in NAVD 1988 = Elevation in NGVD 1929 (ft) + Conversion Value (ft)  

 The conversion factors are negative and are reported as an attribute in the feature class.  A 

geodatabase with the four layers shown in Table 3 was shared with each locality for review.  

Table 3: Summary of GIS layers included in the geodatabase distributed to each locality. 

Spatial Layer Description  

Elevation Certificates with Parcels 

Parcel polygons with building attributes and elevation 

certificate information reported in the original elevation 

certificate vertical datum (NGVD 1929 or NAVD 1988) 

Elevation Certificates with Building Footprints 

Building footprint polygons with building attributes, 

current flood zone, and elevation certificate 

information reported in the original elevation certificate 

vertical datum (NGVD 1929 or NAVD 1988) 

Elevation Certificate Parcels reported in NAVD 1988 
Parcel polygons with elevation certificate information 

converted to NAVD 1988 

Elevation Certificate Building Footprints reported in 

NAVD 1988 

Building footprint polygons with elevation certificate 

information converted to NAVD 1988 
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III. Analysis of Structure Data to Develop First Floor Elevations 

Statistical Methods for Predicting First Floor Elevations  
Although over 2,000 elevation certificates were collected, this represents less than 1% of the 

structures in Hampton Roads. Statistical modeling approaches provide a method of estimating FFE that 

uses sample data to inform predictions for thousands of structures. While elevation certificates are only 

available for a limited number of structures, building attributes, such as year built and foundation type, 

are widely available through each locality’s tax assessor database. Statistical modeling techniques were 

used to identify the relationship between select building attributes and FFHs within the elevation 

certificate database. FFH was selected as the model output for two primary reasons. First, given that FFH 

is the difference between FFE and LAG, this eliminates additional error that is introduced through datum 

conversions. Second, FFH is consistent with the required input for FEMA’s Hazus flood model.  A final 

FFE can be obtained by adding the predicted FFH to an estimate of LAG. Based on the availability of 

elevation certificate data, Chesapeake and Hampton were selected as the two case study communities. 

FEMA’s Hazus technical manual and the previous analysis completed by Dewberry for the City of 

Virginia Beach identify several relevant building characteristics of interest for statistical analysis (FEMA, 

2017; Koka, 2016). The Hazus technical manual provides estimates of FFH by building foundation type 

and whether a structure was built prior to or following a community’s first FIRM (FEMA, 2017). Separate 

estimates of FFH are provided for riverine and coastal flood zones (Table 4). Dewberry’s final regression 

model for Virginia Beach included building occupancy type, year built, foundation type, and difference in 

grade as predictor variables of FFH (Koka, 2016). 

Referencing the variables identified by FEMA and Dewberry, the predictor variables of 

foundation type, year built, a structure’s current highest risk flood zone, and difference in grade were 

evaluated during exploratory regression model development. Foundation type was tested as a predictor 

because building FFH is likely to differ by a foot or more between foundation types (Table 4). Year built 

was selected because it defines shifts in building construction standards. For example, the City of 

Hampton’s first FIRM study occurred in 1984. If a structure was built prior to the community’s effective 

FIRM date, the FFH is likely to be smaller because no floodplain building regulations existed. However 

following the FIRM, the lowest floor elevation of new construction buildings or substantial 

improvements must be at least equal to the BFE (FEMA, 2000). In 2014, Hampton passed 3 feet of 

freeboard within the special flood hazard area (SFHA), which requires a building’s first floor to have a 
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minimum elevation of 3ft above the BFE (City of Hampton, 2014). Therefore year built and flood zone 

were tested as predictors because recent structures within the SFHA will likely have a larger FFH. 

Difference in grade was also tested as a predictor, and is defined as the difference between a structure’s 

highest adjacent grade (HAG) and LAG.  A large difference in grade indicates a structure was built on a 

slope and may consequently have a larger FFH.  

Table 4: FEMA’s default FFH values, defined as height above grade to top of finished floor, from the 
Hazus technical manual. Values reported in feet.   

Foundation Type 
Pre-Firm 

FFH 

Post-FIRM FFH 

(Riverine) 

Post-FIRM FFH 

(Coastal A zone) 

Post-FIRM FFH 

(Coastal V zone) 

Pile 7 8 8 8 

Pier/Post/Beam 5 6 6 8 

Solid Wall 7 8 8 8 

Basement/Garden Level 4 4 4 4 

Crawlspace 3 4 4 4 

Fill 2 2 2 2 

Slab 1 1 1 1 

 

The building’s assessed value and number of stories were also initially tested; however, they did 

not notably improve model performance. Occupancy type was excluded because the elevation 

certificate samples for Chesapeake and Hampton were predominantly single family residential homes. 

The Akaike Information Criterion (AIC) was used to identify the suite of final significant predictors for 

both case study communities (Table 5). AIC uses a backward selection process where predictor variables 

are removed to achieve a model that fits well and minimizes the number of parameters (Hughes, 2012).  
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Table 5: Predictor variables selected for inclusion in the final regression model.  

Predictor Variable Predictor Type Chesapeake Model Hampton Model 

Foundation Type Categorical  6 Types  3 Types  

Year Built Numeric Integer 1940 - 2018 1880 - 2018 

Flood Zone Categorical  AE, Shaded X, X Special Flood Hazard Area 

(VE/AE/AO) Shaded X, X 

Difference in Grade Numeric  0 – 2.8ft 0 – 4.5ft  

Although the same predictor variables were identified as significant for each test community, 

separate models were constructed for Chesapeake and Hampton because of differences in building 

attribute reporting. For example, Table 6 compares how foundation type is expressed by Chesapeake 

and Hampton’s tax assessment offices. Given there are no common foundation codes between these 

localities, constructing separate models simplifies the analysis to test foundation type as a predictor of 

FFH.  All exploratory regression analysis was completed in the statistical software package R, using the R-

ArcGIS Pro Bridge for spatial data (Pobuda and Giner, 2017). The associated R script is attached in 

Appendix C.  

Table 6: Foundation types as labeled in the tax assessment databases for the cities of Chesapeake and 
Hampton. 

 

 

 

 

 

 

 

*Foundation type was coded as partial crawl to simplify to 4 foundation types for Hampton’s final 
regression model. Partial crawlspaces are calculated as a portion of a structures total foundational area.  

City of Chesapeake City of Hampton 

Brick Wall None 

Cinder Block  1/4 Crawl* 

Concrete 1/2 Crawl* 

Concrete Slab 3/4 Crawl* 

Piers Full Crawl 

Stone Wall Full Basement  
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While multivariate linear regression is a useful tool for identifying structural relationships, the 

method imposes assumptions on the normality of the data and requires a linear relationship between 

the predictor variables and response (Hughes, 2012). Nonparametric statistical methods provide 

alternative predictive approaches with less stringent assumptions about the data structure (Hughes, 

2013). Recursive partitioning is a nonparametric approach to regression analysis, where sub-groupings 

of similar responses are created based on the most relevant predictor variables (Hughes, 2013). The 

result is a regression tree that generates predictions.  For example, Figure 4 shows a simple regression 

tree predicting first floor heights for the City of Hampton.  The first branch of the tree is based on 

foundation type (Figure 4). Structures that are coded as “None” or “Partial Crawl” are directed to the 

left branch and estimated to have a first floor height of 1.5 feet (Figure 4). Structures with a “Full Crawl” 

or “Basement” foundation type are grouped to the right, and then further subdivided by year built. In 

this sample regression tree, there are 5 possible FFH values a structure could be assigned.  

 

 

Random Forest is a method of recursive partitioning that generates and averages hundreds of 

regression trees, referred to as an ensemble, based on different randomly selected sub-sets of the 

sample data (Liaw and Wiener, 2002). When predicting values to a new sample, the Random Forest 

model considers results from the ensemble of decision trees to reduce overfitting that may result from a 

Figure 4: Simple regression tree example for the City of Hampton using foundation 
type and year built to predict first finished floor height (feet). 
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single tree (ESRI, 2018).  Therefore, there are many possible prediction values, rather than only 5 as 

shown in Figure 4. Random Forest analysis can be conducted directly in ArcGIS Pro using the Forest-

based Classification and Regression Tool within the Spatial Statistics toolbox.  

The ArcGIS Pro tool also provides the advantage of using explanatory training rasters (ESRI, 

2018). A Digital Elevation Model (DEM) with 5 feet resolution was included as an explanatory variable in 

addition to those previously mentioned (McFarlane, 2015). The DEM was selected as a predictor to 

reflect differences in elevation throughout the community and differences in risk within the special 

flood hazard area. For example, the BFE for a given AE flood zone may be 8ft. A structure located within 

this flood zone at an elevation of 3ft would require an FFH of 5ft to be in compliance with the NFIP, 

whereas a structure at an elevation of 7ft would require a FFH of only 1ft.  

Prior to developing the Random Forest model, the elevation certificate databases for 

Chesapeake and Hampton were divided into randomly selected training and testing data sets, containing 

80% and 20% of each locality’s data, respectively. The purpose of the training data is to build the model, 

while the testing data set provides an independent sample of known FFH observations to evaluate 

model performance. Random Forest models with an ensemble of 500 trees were developed for 

Chesapeake and Hampton using their respective training data sets. The settings used in the ArcGIS Pro 

Forest-based Classification and Regression Tool are provided in Appendix D. The testing data set was 

selected in the tool as the set of features for which FFH predictions should be created. 

Once predictions of FFH were obtained for the testing data sets of each locality, the absolute 

average error and Pearson correlation coefficients were calculated to assess model performance. The 

absolute error for each FFH prediction was calculated in GIS as the absolute value of the difference 

between the observed elevation certificate FFH and the Random Forest estimated FFH. The Pearson 

correlation coefficient measures the degree of linear association between two variables (Hughes, 2013).  

For example, if a model predicted each value in the testing data set exactly, the Pearson correlation 

coefficient would equal one. The Pearson correlation coefficient was calculated in R using the “cor” 

function (RDocumentation, 2019).  

For each structure in the testing dataset, the recommended Hazus FFH value was also assigned 

in GIS based on the structure’s foundation type, pre- or post-FIRM construction, and the highest risk 

flood zone (Table 3). The absolute average error and Pearson correlation coefficient were calculated for 

the Hazus FFH estimates relative to the observed FFH testing data. To assess how the Random Forest 
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model performed relative to Hazus, the percent change in absolute average error between the Random 

Forest model and Hazus default FFH assignments was then calculated:  

((Hazus Absolute Avg. Error – Random Forest Absolute Avg. Error) / (Hazus Absolute Avg. Error))*100 

Once the models were established for Chesapeake and Hampton, they were applied to estimate 

the FFH of single-family residential homes across each locality. To develop the dataset for which the 

Random Forest models would predict FFH, single-family residential building footprints were selected for 

Chesapeake and Hampton. For a given parcel, multiple accessory structures may be present that are also 

labeled as single-family residential building types. Based on the assumption that the largest polygon is 

the primary residence, building footprints were additionally filtered by size so that only the largest 

structure within each parcel was retained. A summary of the distribution of single family residences by 

flood zone with complete attributes is presented in Table 7.  

In order to obtain a FFE estimate, the predicted FFH must be added to the building’s LAG. 

Estimates of each building’s LAG within the predictive data sets were obtained using the DEM 

(McFarlane, 2015). The building footprints were first converted to line features. The minimum and 

maximum elevation, representing the LAG and highest adjacent grade (HAG) respectively, were 

extracted from the DEM along the building outline. The revised building footprints layer containing 

complete predictive attributes for each structure was then applied as the layer for which predictions 

would be created in the Forest-based Classification and Regression Tool.  

Table 7: Summary of single family residential buildings by flood zone and test community. Building 
footprints last updated March 2, 2018 and August 22, 2018 for the Cities of Chesapeake and Hampton 
respectively.  

 
  

Within SFHA 

 

Within 500 year 

(Shaded X) 

 

Area of Minimal 

Flood Hazard 

 

Total  

Chesapeake 4,384 3,199 50,281 57,864 

Hampton 8,340 5,295 24,892 38,527 
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Case Study Results: City of Chesapeake 
The City of Chesapeake elevation certificate database contained 542 residential elevation 

certificate samples with complete building attributes that were used to support model development and 

evaluation. The training data set contained 434 observations (80%) randomly selected from the sample 

elevation certificate data. The remaining 20% of the data (108 observations) was reserved as the testing 

data set for model validation. The locations of elevation certificates used in the analysis are displayed in 

Figure 5, symbolized by training and testing data.  

Although Random Forest analysis eliminates several parametric regression assumptions about 

the data structure, outliers can negatively affect predictive ability. Outliers increase prediction error and 

can mask significant effects of predictor variables (Hughes, 2012).  Five valid residential elevation 

certificates were flagged as outliers. Four of the five elevation certificates were homes of building 

Figure 5: Distribution of elevation certificates used in Random Forest model development and 
evaluation for the City of Chesapeake. 
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diagram 6 or 7, which indicates an enclosure, such as a garage, below the primary living space (Figure 6). 

If assuming the enclosure is unfinished, the resulting FFH is relatively high (9-11 feet) but is still 

categorized as brick wall or cinder block foundation type. The fifth elevation certificate removed 

represented a cinder block home with an unusually high FFH (15.3 feet). These abnormally large FFH 

values noticeably increase the variation within their foundation type categories, decreasing the 

usefulness of foundation type as a predictor. Given that these five structures are fundamentally 

different from other crawlspace structures, they were removed from the analysis. 

 

 

 

 

 

 

 

 

 

The Random Forest analysis was conducted on the training data set of 434 observations with the 

predictor variables identified in Table 5 and the DEM value of each building footprint centroid (or parcel 

centroid if building footprint was unavailable). The ArcGIS Pro Forest-based Classification and Regression 

tool provides Out of Bag statistics to assess model accuracy.  The Out of Bag Mean Squared Error (MSE) 

and percent of variation explained are calculated iteratively and averaged using the portion of the 

training dataset that is excluded from each subsample used to construct each tree in the forest (Esri, 

2018). The resulting iteration indicated the model explained 69.46% of the sample variance with an MSE 

of 0.47. Taking the square root of the MSE allows for interpretation of the result in feet, the units of the 

response variable. The Random Forest model on average produces FFH estimates that are within 0.69 

feet of the actual measured FFH. Foundation type was identified as the most important predictor 

variable, with a score representing 53% of all variable importance (Table 8). The importance score 

Figure 6: FEMA (2015) building diagram for structures elevated on partial or full enclosures at 
grade (Diagram 6) or partially below grade (Diagram 7). 
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reflects the frequency of a variable creating a decision in the tree, or split, and the relative impact of 

that split divided by the number of trees (Esri, 2018).  

Table 8: Summary of variable importance for the City of Chesapeake Random Forest model  

Explanatory Variable Importance Percent Importance 

Foundation Type  329.38 53% 

DEM Value  140.84 22% 

Difference in Grade   75.59 12% 

Year Built    54.14 9% 

Flood Zone   22.53 4% 

 

  The Random Forest model was applied to the testing data set of 108 features to generate 

predictions and evaluate model performance. Using the absolute value of difference between the 

observed and predicted FFH, 68.52% of the Random Forest predicted FFHs were within 0.5 foot of the 

observed FFH (Table 9). Using the Hazus default values, 61.11% of the Hazus estimated FFHs were within 

a 0.5 foot of the observed value (Table 9). When compared to the testing data, the average absolute 

errors were 0.45 and 0.56 for the Random Forest and Hazus estimation approaches respectively. 

Overall, the Random Forest prediction approach resulted in a reduction of average error by 19.62% 

compared to Hazus (Figure 7).  

Table 9: Summary of absolute average errors for the Random Forest Model and Hazus value estimates  

Estimation Approach  Within +/- 0.5 ft Within +/- 1 ft 

Random Forest Model  68.52% (74/108) 93.5% (100/108) 

Hazus Default Value 61.11% (66/108) 88.89% (96/108) 
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The Pearson correlation coefficient for the Random Forest predictions relative to the observed 

FFH in the testing data set was 0.88 (p<0.001), and 0.82 (P<0.001) for the Hazus estimation approach 

(Figure 8).  Given that a value of 1 indicates perfect correlation between observed and predicted values, 

the Pearson correlation coefficients further support that the Random Forest model improved prediction 

performance relative to the default Hazus values. In the Figure 8 scatterplot, points to the left of the 

diagonal reference line of perfect correlation represent overestimates of the observed FFH, and points 

to the right of the diagonal line indicate underestimates. The occurrence of over-predictions and under-

predictions was fairly balanced for both estimation approaches, with approximately 49% of Random 

Forest and 48% of Hazus estimates underestimating the observed FFH.   

 

 

Figure 7: Comparison of absolute errors (Observed Elevation Certificate FFH – Estimated FFH) for the 
Random Forest model and Hazus default assignment method for Chesapeake.  
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Case Study Results: City of Hampton 
The City of Hampton elevation certificate database 

contained 614 residential elevation certificate samples, excluding 

multiple unit apartment complexes (17 elevation certificates). Of 

these elevation certificates, 52 structures were of building 

diagram 5, 6, or 7, representing an average first floor height of 

8.87 feet (Figure 9). The City’s assessment database currently 

classifies these foundation types as “None” or crawlspace; 

however, structures with a slab foundation type are also currently 

coded as “None” in the assessment database. Categorizing slab 

structures, pier structures, and structures which have the primary 

living space above a garage, as the same foundation type creates a 

large range of first floor heights within the “None” category and 

diminishes the value of foundation type as a predictor variable 

(Figure 10).   

Figure 8: Comparison of the difference in predicted and observed first finished floor height 
(FFH) between the Hazus and Random Forest model predictions of the City of Chesapeake.   

Figure 9: Building diagram for structure 
elevated on piers, posts, piles, columns, or 
parallel sheer walls.  
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For structures of building diagram 5, 6, or 7, 31 were coded as “None”, 16 as “Full Crawl”, 3 as partial 

crawl, and 2 as “Full Basement”. After removing these 52 structures, along with 3 other outliers that 

appear to be elevated homes, the “None” category represents slab on grade and raised slab foundation 

type structures alone.  

 

 

  The final residential elevation certificate analysis sample contained 559 elevation certificates. 

Eighty percent of the sample data was randomly selected to create a training data set of 447 

observations. The remaining 20% of the data (112 observations) was reserved as the testing data set for 

model validation. The locations of elevation certificates used in the analysis are displayed in Figure 10 

and symbolized by training or testing data. The Random Forest analysis was conducted on the training 

data set using the variables identified in Table 4 and the DEM as explanatory variables. In order to use 

the difference in grade as a predictor variable, the HAG value was estimated for 65 structures because 

the HAG value was absent on the elevation certificate. The HAG values were estimated in NAVD 1988 

using the DEM. For elevation certificates with values reported in NGVD 1929 (64 of 65), the estimated 

Figure 10: Comparison of first finished floor height distribution by foundation type before and 
after removal of building diagram 5, 6, and 7 outliers and elevated home outliers.  
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NAVD 88 HAG values were converted to NGVD 1929 using location specific conversion factors obtained 

through VERTCON. 

The resulting Random Forest model out of bag errors indicate the model explained 61.97% of 

the sample variance with an MSE of 1.031. The Random Forest model on average produces FFH 

estimates that are within 1.02 feet of the actual measured FFH. Foundation type was identified as the 

most important predictor variable, with an importance score representing 38% of all variable 

importance (Table 10).  

 

 

 

Figure 11: Distribution of elevation certificates used in Random Forest model development and 
evaluation for the City of Hampton. 
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Table 10: Summary of variable importance for the City of Hampton Random Forest model 

Explanatory Variable Importance Percent Importance 

Foundation Type  415.16 38% 

Year Built  270.49 25% 

DEM Value   222.50 21% 

Difference in Grade   148.43 14% 

Flood Zone   23.17 2% 

 

To assess the value of removing the 55 previously mentioned outliers from the model, a Random 

Forest model was developed using all available residential elevation certificate data and the same suite 

of predictors. The resulting Random Forest model had an average error of 2.07 feet and explained only 

30.92% of the sample FFH variation. Foundation type was the second to last explanatory variable when 

ranked by importance. Thus removing the outliers substantially improved model performance and 

increased the value of foundation type as a predictor.  

The Random Forest model was applied to the testing data set of 112 features to generate 

predictions and evaluate model performance. Using the absolute value of difference between the 

observed and predicted FFH, 52.68% of the Random Forest predicted FFHs were within 0.5 foot of the 

observed FFH (Table 11). When using the Hazus default values, 42.86% of the Hazus estimated FFHs 

were within 0.5 foot of the observed value (Table 11). The average absolute errors were 0.80 and 0.84 

for the Random Forest and Hazus estimation approaches, respectively. Overall, the Random Forest 

prediction approach resulted in a reduction of average error by 4.76% (Figure 12).  

Table 11: Summary of absolute average errors for the Random Forest Model and Hazus value estimates 

Estimation Approach  Within +/- 0.5ft Within +/- 1 ft 

Random Forest Model  52.68% (59/112) 72.32% (81/112) 

Hazus Default Value 42.86% (48/112) 71.42% (80/112) 
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Figure 12: Comparison of absolute errors (Observed Elevation Certificate FFH – Estimated FFH) for the 

Random Forest model and Hazus default assignment method for Chesapeake. 

The Pearson correlation coefficient for the Random Forest predictions relative to the observed 

FFH in the testing data set was 0.67 (p<0.001), and 0.63 (p<0.001) for the Hazus estimation approach 

(Figure 13). As observed in the Chesapeake Case study, the Random Forest model slightly improved 

estimations of FFH values relative to Hazus values. The occurrence of over-predictions and under-

predictions was fairly balanced for both estimation approaches, with approximately 48% of Random 

Forest and 50% of Hazus estimates underestimating the observed FFH. For two homes in the testing 

data set, the Random Forest model underestimated the error by over 3 feet. After identifying images of 

these structures, one home appears to have been elevated while the other is a post-FIRM structure with 

an unusually high FFE in order to be in compliance with flood plain regulations. These structures reflect 

general categories of structures where the model likely performs poorly.  
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Case Study Comparisons and Limitations  
When comparing the performance of the Random Forest models for Chesapeake and Hampton, 

the Chesapeake predicted values had a lower absolute average error and greater reduction in error 

relative to the Hazus estimates. Foundation type was identified as the most important variable for both 

the Chesapeake and Hampton models; however, foundation type accounted for a lower percent of the 

total variable importance for Hampton (38%) relative to Chesapeake (53%). This may be attributed to 

less overlap in the range of FFH between foundation type categories for Chesapeake (Figure 14). Year 

built was of greater variable importance for Hampton (25%) relative to Chesapeake (9%).  Hampton had 

197 Pre-FIRM structures relative to only 13 for the Chesapeake sample, creating greater variation in year 

built values. The average FFH for pre-FIRM structures is 2.55 feet, compared to 3.56 feet for post-FIRM 

structures. The FFH is expected to be lower for pre-FIRM structure because they were constructed prior 

to the establishment of flood zones and compliance with the NFIP.  

Figure 13: Comparison of the difference in predicted and observed first finished floor height 
(FFH) between the Hazus and Random Forest model predictions of the City of Hampton.  
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When comparing model performance by foundation type category with the testing data set, the 

Hampton model resulted in a reduction in absolute FFH prediction error (52.6%), relative to the Hazus 

default values, for only the “None” foundation category (n=20). For this category, a default Hazus value 

of 1 foot was selected, corresponding to slab foundation type. The Random Forest model likely shows an 

improvement in predicted FFH because it accounts for a larger range of values, including raised slab 

structures. The Random Forest model for Chesapeake reduced absolute prediction error relative to 

Hazus default values in all foundation type categories of the testing data set. Most notably this included 

a 30.5% reduction in absolute error for “Concrete Slab” (n=29), a 17.8% reduction for “Cinder Block” 

(n=42), and a 14.23% reduction for “Brick Wall” (n=30).  

As previously noted, building diagrams of type 6 and 7 were removed from the analysis for the 

City of Hampton and Chesapeake to reduce variation within foundation type categories. A limitation of 

the Random Forest analysis approach is that the model is designed to predict only within the value 

range of the training data (ESRI, 2018).  Thus the model prediction values likely underestimate the true 

Figure 14: Boxplots comparing the range of first finished floor height values by foundation type 
between the cities of Hampton (left) and Chesapeake (right). The boxplots display only data used in 
the training data set for model development.  
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FFH for these building diagram types. For example, the Hampton predictive model assumes all “None” 

foundation type buildings are slab on grade or raised slab. However, based on the elevation certificate 

data, some of these structures are of building diagram 5-7 and have a FFH greater than 10 ft.  

It is also important to note that in addition to the error associated with the FFH prediction, the 

final FFE estimate also includes error from estimating the building’s LAG value from the DEM. Using the 

building footprints associated with the training data set, the LAG was estimated from the DEM and 

subtracted from the observed LAG reported on the elevation certificate. The absolute average error was 

approximately 1 foot for Hampton and 2 feet for Chesapeake (Table 12). Given that the average error 

was positive for both localities, the DEM estimation approach tends to underestimate LAG elevation. 

Table 12: Comparison of error, defined as the difference between the observed LAG on the elevation 
certificate and the estimated LAG from the DEM, for the Hampton and Chesapeake model training data 
sets. Only elevation certificates recorded in NAVD 1988 were used to avoid introducing additional 
conversion error. 

Locality  Abs. Average (ft) Average (ft) Abs. Median (ft) Range (ft) 
Hampton (n=127) 1.00 0.97 0.62 -1.1  – 7.5  
Chesapeake (n=77) 2.01 1.98 1.81 -0.95– 5.32 
 

IV. Alternative Estimation Approaches  
 

To apply the Random Forest estimation approach, a relatively large sample size is needed for 

model development. ESRI (2018) recommends training the model on at least several hundred features, 

which disqualifies localities with limited elevation certificate samples. In order to apply the random 

forest model to the other eight localities for which elevation certificates have been obtained, additional 

FFE samples are needed. These could be collected in the form of new elevation certificates or field 

surveys that provide an estimate of FFE and LAG. The Google Street View imagery approach applied by 

USACE also offers a relatively low-cost option for increasing FFE sample sizes. An accuracy assessment 

comparing approaches would be useful in determining the trade-off between cost and data quality.  

The current database of elevation certificates and predictions could help inform strategic 

sampling of additional data collection. For example, the elevation certificate database can be used to 

identify neighborhoods where building diagram 5-7 structures are currently present and likely to occur. 

The predicted FFE can also be used to flag structures where the model may perform poorly. For 
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example, structures that have a predicted FFE estimate below the BFE in the SFHA require further 

investigation. This is particularly important for Post-FIRM structures because an FFE below the BFE 

would not be compliant with the locality’s floodplain management ordinance requirements. Post-FIRM 

structures with a predicted FFE estimate below the BFE likely indicate an error in the model 

performance and will require use of an alternative estimation approach.  

Additional field data collection would also support an evaluation of the accuracy of elevation 

certificates. Elevation certificates several decades old may not reflect the current condition of the 

structure. Furthermore, nearly 60% of the elevation certificates in the geodatabase were recorded in 

NGVD 1929. When the elevations are converted to NAVD 1988, additional error is introduced; however, 

the VERTCON conversion program can be considered accurate within 2 cm (0.07 foot) (Mulcare, 2004). 

Surveying error may also result if the building diagram was incorrectly selected, or the surveyor 

misinterpreted the top of bottom floor classification. Collecting an independent sample of field 

measurements using a high-precision instrument, such as a laser inclinometer, of structures that have 

elevation certificates would allow for an estimation of existing error.  

V. Recommended Practices for Data Management and Classification 
 

  All elevation certificates used for this project were collected as digital PDFs or image files. These 

digital copies are often stored in individual permit files. Creating and organizing digital copies of 

certificates in a single computer folder location, in addition to individual permit files, will help facilitate 

the process of future data entry. To streamline the process of importing data into GIS, it is 

recommended to include the address and Parcel ID in the elevation certificate PDF file name. For 

example, James City County includes Parcel ID in the filename for PDF copies of elevation certificates. 

The Python script in Appendix E loops through the PDF names and stores the output in an Excel table. 

This creates a common attribute field between the elevation certificates and spatial parcels layer to join 

the information in GIS.  James City County also includes PDF copies of elevation certificates by parcel on 

their public property viewer (James City County, 2018). The elevation certificates can then easily be 

compared to the corresponding assessment data and building images.  
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As noted in the Chesapeake and Hampton case studies, localities have different schemes for 

coding foundation type. In some databases, a structure with a living space elevated above a garage 

cannot be distinguished from a slab on grade structure unless an image of the building is available, 

which creates a challenge for predictive modeling. A separate foundation type classification or 

additional attribute would be helpful. For example, York County denotes structures with the living space 

above the garage as “GAR/U”, and structures that have been elevated as “ELEV” (Figure 15).  Based on 

the current elevation certificate sample for York County, structures with “GAR/U” foundation type have 

an average FFH of around 11 feet, and structures coded as “ELEV” have an average FFH of around 10 

feet. These foundation types provide a critical distinction from slab structures, which often have an FFH 

around 1 foot. For new construction homes, localities should consider including an additional attribute 

or alter the foundation type code for structures with elevated living spaces.  

VI. Conclusions and Next Steps  
 

  Building FFEs provide a critical piece of information when assessing structural vulnerability to 

flooding. Within Hampton Roads, the primary source of FFE information is elevation certificates. By 

compiling information from available digital copies of elevation certificates, a regional elevation 

certificate database was created with over 2,000 observations, now accessible on the Hampton Roads 

Regional GIS portal (www.HRGEO.org). Using elevation certificate information from two test 

communities, the cities of Chesapeake and Hampton, two predictive Random Forest models were 

created that estimate FFH for buildings that lack elevation certificates. The FFH prediction was then 

Figure 15: House with foundation type coded as “GAR/U” (left) and house with foundation type 
coded as “ELEV” (right). Images obtained from York County Property Information portal 
https://maps.yorkcounty.gov/York/Account/Logon 

 

https://maps.yorkcounty.gov/York/Account/Logon
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applied to an estimate of a structure’s LAG to obtain a final predicted FFE. The models for both localities 

highlight the importance of foundation type as a predictive variable. Given the large number of Pre-

FIRM structures within the Hampton database, year built was also identified as an important variable. 

Although the model performed with greater accuracy in Chesapeake than Hampton, both models 

improved FFH estimates relative to the current default Hazus FFH assignments. Further evaluation of 

spatial patterns in the resulting model error may help identify additional sources of error or priority 

areas for field data collection.  

This report marks the conclusion of the first phase of the regional FFE database initiative. 

Funding has been awarded to continue the database development. The current inventory can be 

expanded by obtaining elevation certificates from communities which currently have only paper copies 

available. For example, York County is continuing to convert paper copies of elevation certificates into 

PDFs. Once all digital copies are obtained, there will likely be a sufficient sample size to test the 

modeling approach for York County. This will also allow for evaluation of model performance with a 

different foundation type coding scheme that includes a distinction for structures with a living space 

elevated above a garage. The existing database will also be updated with additional elevation 

certificates for new construction homes. A plan for long-term maintenance will likely include an annual 

or biannual data call for new elevation certificates. 

The second phase of the FFE project will also involve applying the FFE database to test 

approaches for assessing structural vulnerability to coastal hazards, such as sea level rise, tidal flooding, 

and storm surge. Methodologies will be evaluated for pilot communities with the goal of providing 

vulnerability assessment techniques that could apply to local coastal hazard strategies, comprehensive 

plans, and the next update of the regional hazard mitigation plan. Continued coordination with both 

governmental and non-governmental entities, including academic institutions, will help ensure efforts 

are complimentary. By exploring and evaluating various methods for improving FFE data, the Hampton 

Roads region will continue to build the foundation of data necessary to understand and plan for the 

increasing risk of coastal hazards.  
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VIII. Appendices 

Appendix A: Elevation Certificate Database Attributes  

                                                           
4 EC Sect. abbreviates Elevation Certificate Section. Sections refer to the FEMA Elevation Certificate 2015 edition. 
5 HRGEO refers to the regional parcels layer on the Hampton Roads Regional GIS portal.  

Attribute Field Description   Field    
  Type 

Source 

EC_Street_Address Street number and name as listed on the 
elevation certificate Text EC Sect. A24 

PSTLADDRES Parcel postal address from HRGEO Parcels layer Text HRGEO 
Parcels5 

City City where applicable.  Text EC Sect. A2 
County  County where applicable.  Text EC Sect. A2 
State State (Virginia) Text EC Sect. A2 

PSTLZIP5 5 digit zip code from HRGEO Parcels layer or 
elevation certificate Double HRGEO 

Parcels 

Exp_Date 

Elevation certificate form expiration date.  This 
refers to the format of the certificate, and does 
not mean the elevations reported are no longer 
valid if past the expiration date. 

Date EC Page 1 

Bldg_Use Building use (residential, non-residential, 
addition, accessory) Text EC Sect. A4 

Bldg_Diagram Building diagram number Text EC Sect. A7 

DFIRM_ID NFIP community number Long 
Integer EC Sect. B1 

FIRM_Date FIRM Panel Effective/Revised Date Date EC Sect. B8 
EC_Flood_Zone Primary flood zone (highest risk) Text EC Sect. B8 
EC_Flood_Zone1 Additional flood zones on building property Text EC Sect. B8 
EC_Flood_Zone2 Additional flood zones on building property Text EC Sect. B8 

EC_BFE Base flood elevation reported on elevation 
certificate.  Double EC Sect. B9 

Elev_Datum Elevation datum used for BFE and elevation 
certificate measurements.  Text EC Sect. C2 

Top_BF Top of bottom floor elevation Double EC Sect. C2a 
Top_NHF Top of the next higher floor elevation Double EC Sect. C2b 

BLHM Bottom of the lowest horizontal structural 
member elevation Double EC Sect. C2c 

AT_GAR Attached garage elevation Double EC Sect. C2d 

Elev_Equip Lowest elevation of machinery or equipment 
servicing the building  Double EC Sect. C2e 

LAG Lowest adjacent (finished) grade next to 
building. Double EC Sect. C2f 

HAG Highest adjacent (finished) grade next to 
building. Double EC Sect. C2g 
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Attribute Field Description   Field    
  Type Source 

LowElev_Stairs Lowest adjacent grade at lowest elevation of 
deck or stairs, including structural support.  Double EC Sect. C2h 

Finished_First 
FloorElevation 

See notes on Sheet 2 documenting first finished 
floor elevation determination.  Double  HRPDC 

Determination 

Finished_FirstFloorHeight Calculated as (Finished first floor elevation - 
Lowest Adjacent Grade) Double HRPDC 

Determination 
Length_unit Measurement unit used to record elevations.  Text EC Sect. C2 

Issue_Date Date elevation certificate was signed by 
surveyor.  Date EC Sect. D 

BuildingFootprint Indicates if a building footprint is currently 
available for the structure (yes/no).  Text HRPDC 

Determination 

Notes Notes about the specific structure where 
necessary.  Text HRPDC 

Determination 

 
LowFloor 99 

 
Elevation of lowest floor. Reported only for City 
of Franklin elevation certificates in 1999. 

 
Double 

EC Franklin 
1999 edition 

 
HighWater99 

 
Elevation of high water mark. Reported only for 
City of Franklin elevation certificates in 1999. 

 
Double 

EC Franklin 
1999 edition 

FIPS FIPS code Text FIPS 
PARCELID Parcel GPIN Text HRGEO Parcels 

TAXMAPNO Parcel Tax Map Number Text HRGEO 
Parcels 

ZONING* Locality Zoning District Text HRGEO 
Parcels 

IMPVALUE* Building Improvements Value Text HRGEO 
Parcels 

LNDVALUE* Land Value Text HRGEO 
Parcels 

TOTVALUE* Total Value Text HRGEO 
Parcels 

RESYRBUILT* Year Structure Built Text HRGEO 
Parcels 

FIRM_Status* Designates whether a structure is Pre or Post 
FIRM (Pre/Post) Text HRPDC 

Determination 

FOUNDATION* Structure foundation type as coded by locality Text 
Local 
assessment 
data 

SRCAGENCY Locality agency/dept. providing parcel 
information.  Text HRGEO 

Parcels 

AGENCYURL Locality agency/dept. URL.  Text HRGEO 
Parcels 

PARCELS_LASTUPDATE Date of last HRGEO update to parcels layer. Text HRGEO 
Parcels 
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*Value not reported for accessory structures.  
**Present in regional elevation certificate building footprints layer only.  
***Present only in layers where all elevation values have been converted to NAVD 1988.  

 

  

                                                           
6 Federal Emergency Management Agency’s National Flood Hazard Layer. (2018) 
7 Virginia Geographic Information Network (VGIN) Building Footprint Map Service. (2018) 
8 NOAA National Geodetic Survey (NGS) datum conversion tool, VERTCONv2.1. (2018) 

Attribute Field Description Field Type Source 
New_FLD_ZONE**  Highest risk flood zone of the current FIRM Text FEMA NFHL6 

New_ZONE_SUBTY** Description of current highest risk FIRM flood 
zone.  Text FEMA NFHL 

New_STATIC_BFE_88** Current highest base flood elevation in NAVD 88 
 Double FEMA NFHL 

New_SFHA_TF** Building currently located in the Special Flood 
Hazard Area (T/F) Text FEMA NFHL 

FEMA_SOURCE_CIT** FEMA  study citation for current flood zones Text FEMA NFHL 

STORY** Number of stories  Text 
Local 
assessment 
data 

VGIN_LastUpdate** Date of last VGIN update to building footprints 
layer Date VGIN Building 

Footprints7 

VGIN_GEOID** Identification number for building footprint 
from VGIN Text VGIN Building 

Footprints 
Current_Datum*** Vertical datum that all elevations are reported in  

(NAVD 1988) 
Text NAVD 1988 

Conv_FactorM*** Factor to convert from NGVD 1929 to NAVD 
1988 reported in meters Double VERTCON 

Calculation8 

Conv_FactorFt*** Factor to convert from NGVD 1929 to NAVD 
1988 reported in feet Double VERTCON 

Calculation 

LAT Latitude of point used to determine conversion 
factor Double GIS 

Calculation 

LON  Longitude of point used to determine 
conversion factor Double GIS 

Calculation 
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Appendix B: First Finished Floor Elevations by Building Diagram  

 

  

                                                           
9 All building diagrams provided in FEMA National Flood Insurance Program Elevation Certificate and Instructions, 
2015 Edition.  
 
10 Explanation provided by HRPDC to describe how first finished floors were generally assigned for database 
development. No official surveyor determination of first finished floor is required on the elevation certificate. 

Building Diagram9 First Finished Floor 
Measurement Label 

Explanation10 

1A C2a Slab-on-Grade 

1B C2a Raised Slab-on-Grade 

2A C2b Basement – Assumes basement is 
unfinished. 

2B C2b Basement – Assumes basement is 
unfinished. 

3 C2a Split Level – Assumes partial slab-
on-grade. 

4 C2b Split Level with Basement – 
Assumes basement is unfinished. 

5 C2a 
Elevated on pier, post, piles (etc.) 
with no obstructions below the 
elevated floor 

6 C2b 

Elevated on pier, post, piles (etc.) 
with full or partial enclosure 
below the elevated floor. 
Assumes enclosure is unfinished. 

7 C2b 

Elevated on full-story foundation 
walls with a partially or fully 
enclosed area below the elevated 
floor. Assumes enclosure is 
unfinished (i.e. garage). 

8 C2b Crawlspace 

9 C2b Sub-grade Crawlspace 
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Appendix C: Exploratory Statistical Analysis Code 
 

#Exploratory Regression Analysis for the Cities of Hampton and Chesapeake 
#ESRI Resources: Go Deeper with Data Analystics Using ArcGIS Pro and R, Introduction to Regression Analysis Using 
ArcGIS Pro 

#Load necessary packages 
library(arcgisbinding) 
arc.check_product() 
library(rgdal)  
library(rpart) 

#Load Hampton elevation certificate feature layers 
HA_gis_data_AllRes <-arc.open(path = 
'K:/PHYS/PROJECTS/FFE/Hampton/HamptonFFEgdb.gdb/Hampton_ElevCert_Parcels_AllRes') 

HA_gis_data_OutliersRemoved <-arc.open(path = 
'K:/PHYS/PROJECTS/FFE/Hampton/HamptonFFEgdb.gdb/HA_REG_POINTS_FINAL') 

#Convert feature layers to data frames  
HA_all <- arc.select(HA_gis_data_AllRes) 
HA_reg <- arc.select(HA_gis_data_OutliersRemoved) 

#Load Chesapeake elevation certificate feature layers 
CH_gis_data_OutliersRemoved <-arc.open(path = 
'K:/PHYS/PROJECTS/FFE/Chesapeake/ChesapeakeFFE.gdb/CH_REG_POINTS_FINAL') 

#Convert feature layers to data frames 
CH_reg <- arc.select(CH_gis_data_OutliersRemoved) 

#Create training and testing data subsets for Chesapeake and Hampton analysis  
#80% training data and 20% testing. Determine number of observations needed for training dataset smp_sizeHA <- 
round(0.80 * nrow(HA_reg), digits=0) 
smp_sizeCH <- round(0.80 * nrow(CH_reg), digits=0) 

#Randomly select observations for training data sample. 
trainHA <- sample(seq_len(nrow(HA_reg)), size = smp_sizeHA) 
trainCH <- sample(seq_len(nrow(CH_reg)), size = smp_sizeCH) 

#Subset the original data based on the randomly selected observations above. 
HA_train <- HA_reg[trainHA, ] 
CH_train <- CH_reg[trainCH, ] 

#Create spatial objects for the subset data frame in order to create GIS layer.  
sp_HA_train <- arc.data2sp(HA_train) 
sp_CH_train <- arc.data2sp(CH_train) 
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#Create testing data set using remaining 20% of observations that were not included in the training dataset. 
HA_test <- HA_reg[-trainHA, ]  
CH_test <- CH_reg[-trainCH, ]  

#Create spatial objects for the subset data frame in order to create GIS layer.   
sp_HA_test <-arc.data2sp(HA_test) 
sp_CH_test <-arc.data2sp(CH_test) 

#Write output of testing dataset as a shapefile for analysis in GIS. Ensure pacakge Rgdal is loaded. 
writeOGR(sp_HA_test, "K:/PHYS/PROJECTS/FFE/Hampton", "HA_TEST_RF_Final", driver="ESRI Shapefile") 
writeOGR(sp_HA_train, "K:/PHYS/PROJECTS/FFE/Hampton", "HA_TRAIN_RF_Final", driver="ESRI Shapefile") 

writeOGR(sp_CH_test, "K:/PHYS/PROJECTS/FFE/Chesapeake", "CH_TEST_RF_FINAL", driver="ESRI Shapefile") 
writeOGR(sp_CH_train, "K:/PHYS/PROJECTS/FFE/Chesapeake", "CH_TRAIN_RF_Final", driver="ESRI Shapefile") 

#---DESCRIPTIVE STATISTICS: BOXPLOTS---  

#Hampton comparison of first finished floor height by foundation type before and after outlier removal.  

attach(HA_all) 
par(mfrow=c(1,2)) 
b <-boxplot(Finished_FirstFloorHeight ~ FOUNDAT,plot=0, xaxt="n") 
boxplot(Finished_FirstFloorHeight ~ FOUNDAT, ylab="Finished First Floor Height (ft)", main="All Residential Data", 
xaxt="n", ylim=c(0,15), col=c('orangered3','tan1', "springgreen3", "steelblue3")) 
text(x=seq(0.5,3.5, by=1), par("usr")[3]-1.1, labels=paste(b$names,"(n=",b$n, ")"),srt=30, pos=1, xpd=TRUE) 
detach(HA_all) 
attach(HA_reg) 
b <-boxplot(Finished_FirstFloorHeight ~ FOUNDATION,plot=0, xaxt="n") 
boxplot(Finished_FirstFloorHeight ~ FOUNDATION, main="Outliers Removed", xaxt="n", ylim=c(0,15), 
col=c('orangered3','tan1', "springgreen3", "steelblue3")) 
text(x=seq(0.5,3.5, by=1), par("usr")[3]-1.1, labels=paste(b$names,"(n=",b$n, ")"),srt=30, pos=1, xpd=TRUE) 
detach(HA_reg) 

#Comparison of Hampton and Chesapeake training data first finished floor height by foundation type 
attach(HA_train) 
par(mfrow=c(1,2)) 
b <-boxplot(Finished_FirstFloorHeight ~ FOUNDATION,plot=0, yaxt="n", xaxt="n") 
boxplot(Finished_FirstFloorHeight ~ FOUNDATION, names=paste(b$names,"(n=",b$n, ")"), ylim=c(0,10), xaxt="n", 
main="Hampton Training Data", ylab="Finished First Floor Height (ft)", col=c('orangered3','tan1', "springgreen3", 
"steelblue3")) 
text(x=seq(0.5,3.5, by=1), par("usr")[3]-.7, labels=paste(b$names,"(n=",b$n, ")"),srt=30, pos=1, xpd=TRUE) 
detach(HA_train) 
attach(CH_train) 
b <-boxplot(Finished_FirstFloorHeight ~ FOUNDAT,plot=0, yaxt="n", xaxt="n") 
boxplot(Finished_FirstFloorHeight ~ FOUNDAT, names=paste(b$names,"(n=",b$n, ")"), ylim=c(0,10), xaxt="n", 
main="Chesapeake Training Data", col=c('orangered3','tan1', "gold", "springgreen3", "steelblue3","purple3")) 
text(x=seq(0.5,5.5, by=1), par("usr")[3]-.7, labels=paste(b$names,"(n=",b$n, ")"),srt=30, pos=1, xpd=TRUE) 
detach(CH_train) 
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#---EXPLORATORY REGRESSION--- 

#Code for Akaike Information Criterion (AIC) variable selection for multivariate regression   
#Run AIC with all potential predictors to assess best model fit.  
#Hampton variable selection:  
attach(HA_train) 
mlrfit_HA <- lm(Finished_FirstFloorHeight ~ FOUNDATION + YrBuilt + FLD_Zone_Simple + HAG_LAG + STORY + 
DwlgVal1) 
#Note that 'Split' for story was coded as 1.5 to create numeric value.  
summary(mlrfit_HA) 
step(mlrfit_HA, direction = "backward") 
detach(HA_train) 

#Chesapeake variable selection:  
attach(CH_train) 
mlrfit_CH <- lm(Finished_FirstFloorHeight ~ FOUNDAT + YEARBUILT + FLD_ZONE + HAG_LAG + STORY+ IMPVALUE) 
summary(mlrfit_CH) 
step(mlrfit_CH, direction = "backward") 
#IMPVALUE retained by AIC; however including it in the model only reduces standard error by 0.04ft. Not included 
in final model. 
detach(CH_train) 

#Simple Regression Tree Demo. Ensure rpart package is loaded.  
attach(HA_train) 
par(mfrow=c(1,1)) 
treeSimple <- rpart(Finished_FirstFloorHeight ~ YrBuilt+FOUNDATION, data=HA_train) 
plot(treeSimple) 
text(treeSimple) 
print(treeSimple) 

#---Random Forest Model Evaluation: Pearson Correlation Test--- 
#Load Random Forest model and Hazus predictions for testing datasets for Hampton and Chesapeake 
HA_gis_data_Predict <-arc.open(path = 
'K:/PHYS/PROJECTS/FFE/Hampton/Hampton_FirstFloorElevations.gdb/Hampton_ElevCert_TEST_NEW_Predictions
_AllAtt') 

CH_gis_data_Predict <- arc.open(path = 
'K:/PHYS/PROJECTS/FFE/Chesapeake/ChesapeakeFFE.gdb/CH_Testing_NEW_Predictions_FINAL') 

#Convert feature layers to data frames  
HA_predict <- arc.select(HA_gis_data_Predict) 
CH_predict <- arc.select(CH_gis_data_Predict) 

#Hampton Data 
attach(HA_predict) 
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#Run Pearson Correlation Coefficient Test for Random Forest predictions 
RF_HA<- cor(PREDICTED,Finished_FirstFloorHeight, method="pearson") 
cor.test(PREDICTED,Finished_FirstFloorHeight, method="pearson") 

#Run Pearson Correlation Coefficient Test for Hazus estimations  
Hazus_HA<- cor(HAZUS_FFH, Finished_FirstFloorHeight, method="pearson") 
cor.test(HAZUS_FFH,Finished_FirstFloorHeight, method="pearson") 

#Plot Ranodm Forest and Hazus estimations relative to observed first finished floor height 
plot(PREDICTED~Finished_FirstFloorHeight, col='red', pch=16, ylab="Predicted FFH (ft)", xlab="Observed FFH (ft)", 
ylim=c(0,8), xlim=c(0,8)) 
points(HAZUS_FFH~Finished_FirstFloorHeight, col='blue', pch=16) 
abline(c(0,1), lty=2) 
legend("bottomright",inset=.05,legend=c("Hazus Default (r=0.63)","Random Forest Model (r=0.67)"),pch=16, 
col=c("blue","red")) 
title(main="Scatterplot of Predicted vs. Observed Finished First Floor Height") 
detach(HA_predict) 

#Chesapeake Data 
attach(CH_predict) 

#Run Pearson Correlation Coefficient Test for Random Forest predictions 
RF_CH<- cor(PREDICTED,Finished_FirstFloorHeight, method="pearson") 
cor.test(PREDICTED,Finished_FirstFloorHeight, method="pearson") 

Hazus_CH<- cor(HAZUS_FFH, Finished_FirstFloorHeight, method="pearson") 
cor.test(HAZUS_FFH,Finished_FirstFloorHeight, method="pearson") 

#Plot Random Forest and Hazus estimations relative to observed first finished floor height 
plot(PREDICTED~Finished_FirstFloorHeight, col='red', pch=16, ylab="Predicted FFH (ft)", xlab="Observed FFH (ft)", 
ylim=c(0,7), xlim=c(0,7)) 
points(HAZUS_FFH~Finished_FirstFloorHeight, col='blue', pch=16) 
abline(c(0,1), lty=2) 
legend("bottomright",inset=.02,legend=c("Hazus Default (r=0.82)","Random Forest Model (r=0.88)"),pch=16, 
col=c("blue","red")) 
title(main="Scatterplot of Predicted vs. Observed Finished First Floor Height") 
detach(CH_predict)  
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Appendix D: Random Forest Tool Settings  
 
Settings applied to the “Forest-based Classification and Regression” tool in ArcGIS Pro 2.2.0. This tool is 
included in the Modeling Spatial Relationships toolset of the Spatial Statistics toolbox. 

The following modifications were also made to the Advanced Forest Options setting:  

Setting Selected Value Default Value 
Number of Trees 500 100 
Number of Randomly Selected Variables       2 Not defined 
Training Data Excluded for Validation       0      10% 
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Appendix E: Python Script for Organizing Elevation Certificates 
 

#Script to extract parcel ID from multiple elevation certificate filenames and store in Excel.  
#Hampton Roads Planning District Commission, January 2019 

#Import modules 
import sys, os 
import pandas as pd 

#Set relative paths 
scriptDir = os.path.dirname(sys.argv[0]) 
rootDir = os.path.dirname(scriptDir) 
dataDir = os.path.join(rootDir, "FFE\\ElevationCertificates”) 

#Extract parcel ID from each elevation certificate filename and store in a dictionary 
pathList = os.listdir(dataDir) 
ecData = {} 
ecList = [] 
for path in pathList:  
    ecData['Filename']= path 
    ecData['Parcel Number'] = path[17:-4] 
    ecList.append(ecData.copy())     
outfile = rootDir + '\\' + 'FFE\ElevationCertificates\\ElevationCertificatesID.csv' 
#Convert parcel id list to a data frame and store as a csv  
dfFinal = pd.DataFrame.from_records(ecList) 
dfFinal.to_csv(outfile) 
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